Abstract.

An important problem in biological modeling is choosing the right model. Given experimental data, one is supposed to find the best mathematical representation to describe the real-world phenomena. However, there may not be a unique model representing that real-world phenomena. Two distinct models could yield the same exact dynamics. In this case, these models are called indistinguishable. In this work, we consider the indistinguishability problem for linear compartmental models, which are used in many areas, such as pharmacokinetics, physiology, cell biology, toxicology, and ecology. We exhibit sufficient conditions for indistinguishability for models with a certain graph structure: paths from input to output with “detours.” The benefit of applying our results is that indistinguishability can be proven using only the graph structure of the models, without the use of any symbolic computation. This can be very helpful for medium-to-large sized linear compartmental models. These are the first sufficient conditions for the indistinguishability of linear compartmental models based on graph structure alone, as previously only necessary conditions for indistinguishability of linear compartmental models existed based on graph structure alone. We prove our results by showing that the indistinguishable models are the same up to a renaming of parameters, which we call permutation indistinguishability.

Keywords

  1. indistinguishability
  2. linear compartmental models
  3. identifiability
  4. detour models
  5. dynamical systems
  6. graph theory

MSC codes

  1. 37N25
  2. 92C45
  3. 93B30
  4. 34A30
  5. 34A55

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
R. Bellman and K. J. Åström, On structural identifiability, Math. Biosci., 7 (1970), pp. 329–339, http://doi.org/10.1016/0025-5564(70)90132-X.
2.
G. Bellu, M. P. Saccomani, S. Audoly, and L. D’Angiò, DAISY: A new software tool to test global identifiability of biological and physiological systems, Comput. Methods Prog. Bio., 88 (2007), pp. 52–61, http://doi.org/10.1016/j.cmpb.2007.07.002.
3.
C. Bortner, E. Gross, N. Meshkat, A. Shiu, and S. Sullivant, Identifiability of linear compartmental tree models and a general formula for input-output equations, Adv. Appl. Math., 146 (2023), 102490, http://doi.org/10.1016/j.aam.2023.102490.
4.
C. Bortner, E. Gross, N. Meshkat, A. Shiu, and S. Sullivant, Identifiability of linear compartmental tree models and a general formula for the input-output equations, Adv. Appl. Math., 146 (2023).
5.
P. C. Bressloff and J. G. Taylor, Compartmental-model response function for dendritic trees, Biol. Cybernet., 70 (1993), pp. 199–207.
6.
M. Chapman and K. Godfrey, Nonlinear compartmental model indistinguishability, Automatica J. IFAC, 32 (1996), pp. 419–422, http://doi.org/10.1016/0005-1098(95)00152-2.
7.
M. J. Chapman, K. R. Godfrey, and S. Vajda, Indistinguishability for a class of nonlinear compartmental models, Math. Biosci., 119 (1994), pp. 77–95, http://doi.org/10.1016/0025-5564(94)90005-1.
8.
N. R. Davidson, K. R. Godfrey, F. Alquaddoomi, D. Nola, and J. J. DiStefano, DISTING: A web application for fast algorithmic computation of alternative indistinguishable linear compartmental models, Comput. Methods Prog. Bio., 143 (2017), pp. 129–135, http://doi.org/10.1016/j.cmpb.2017.02.025.
9.
J. J. DiStefano III, Dynamic Systems Biology Modeling and Simulation, Academic Press, New York, 2015.
10.
S. T. Glad, Differential Algebraic Modelling of Nonlinear Systems, Birkhäuser Boston, Boston, MA, 1990, pp. 97–105, http://doi.org/10.1007/978-1-4612-3462-3_9.
11.
K. Godfrey, M. Chapman, and S. Vajda, Identifiability and indistinguishability of nonlinear pharmacokinetic models, J. Pharmacokinet. Biopharm., 22 (1994), pp. 229–251.
12.
K. R. Godfrey and M. J. Chapman, Identifiability and indistinguishability of linear compartmental models, Math. Comput. Simul., 32 (1990), pp. 273–295.
13.
E. Gross, H. A. Harrington, N. Meshkat, and A. Shiu, Linear compartmental models: Input-output equations and operations that preserve identifiability, SIAM J. Appl. Math., 79 (2019), pp. 1423–1447.
14.
H. Hong, A. Ovchinnikov, G. Pogudin, and C. Yap, Global identifiability of differential models, Comm. Pure Appl. Math., 73 (2020), pp. 1831–1879.
15.
L. Ljung and T. Glad, On global identifiability for arbitrary model parametrizations, Automatica J. IFAC, 30 (1994), pp. 265–276, http://doi.org/10.1016/0005-1098(94)90029-9.
16.
N. Meshkat, Z. Rosen, and S. Sullivant, Algebraic tools for the analysis of state space models, Adv. Stud. Pure Math. 77 (2018), pp. 171–205.
17.
N. Meshkat and S. Sullivant, Identifiable reparametrizations of linear compartment models, J. Symbolic Comput., 63 (2014), pp. 46–67, http://doi.org/10.1016/j.jsc.2013.11.002.
18.
N. Meshkat, S. Sullivant, and M. Eisenberg, Identifiability results for several classes of linear compartment models, Bull. Math. Biol., 77 (2015), pp. 1620–1651.
19.
F. Ollivier, Le Problème de l’Identifiabilité Structurelle Globale: Étude Théorique, Méthodes Effectives et Bornes de Complexité, Ph.D. thesis, École Polytéchnique, 1990.
20.
A. Ovchinnikov, A. Pillay, G. Pogudin, and T. Scanlon, Computing all identifiable functions of parameters for ODE models, Systems Control Lett., 157 (2021), 105030.
21.
A. Raksanyi, Y. Lecourtier, E. Walter, and A. Venot, Identifiability and distinguishability testing via computer algebra, Math. Biosci., 77 (1985), pp. 245–266, http://doi.org/10.1016/0025-5564(85)90100-2.
22.
M. Renardy, D. Kirschner, and M. Eisenberg, Structural identifiability analysis of age-structured PDE epidemic models, J. Math. Biol., 84 (2022), 9.
23.
S. Vajda, Structural equivalence and exhaustive compartmental modeling, Math. Biosci., 69 (1984), pp. 57–75.
24.
E. Walter, Y. Lecourtier, and J. Happel, On the structural output distinguishability of parametric models, and its relations with structural identifiability, IEEE Trans. Automat. Control, 29 (1984), pp. 56–57, http://doi.org/10.1109/TAC.1984.1103379.
25.
J. W. Yates, R. O. Jones, M. Walker, and S. A. Cheung, Structural identifiability and indistinguishability of compartmental models, Expert Opin. Drug Metab. Toxicol., 5 (2009), pp. 295–302, http://doi.org/10.1517/17425250902773426.
26.
L.-Q. Zhang, J. C. Collins, and P. H. King, Indistinguishability and identifiability analysis of linear compartmental models, Math. Biosci., 103 (1991), pp. 77–95, http://doi.org/10.1016/0025-5564(91)90092-W.