Abstract

Dendritic spines are microstructures located on dendrites of neurons, where calcium can be compartmentalized. They are usually the postsynaptic parts of synapses and may contain anywhere from a few up to thousands of calcium ions at a time. Initiated by an action potential, a back-propagating action potential, or a synaptic stimulation, calcium ions enter spines and are known to bring about their fast contractions (twitching), which in turn affect calcium dynamics. In this paper, we propose a coarse-grained reaction-diffusion (RD) model of a Langevin simulation of calcium dynamics with twitching and relate the biochemical changes induced by calcium to structural changes occurring at the spine level. The RD equations model the contraction of proteins as chemical events and serve to describe how changes in spine structure affect calcium signaling. Calcium ions induce contraction of actin-myosin-type proteins and produce a flow of the cytoplasmic fluid in the direction of the dendritic shaft, thus speeding up the time course of calcium dynamics in the spine, relative to pure diffusion. Experimental and simulation results reveal two time periods in spine calcium dynamics. Simulations [D. Holcman, Z. Schuss, and E. Korkotian, Biophysical Journal, 87 (2004), pp. 81--91] show that in the first period, calcium motion is mainly driven by the hydrodynamics, while in the second period it is diffusion. The coarse-grained RD model also gives this result, and the analysis reveals how the two time constants depend on spine geometry. The model's prediction, that there are not two time periods in the diffusion of inert molecules in the spine, has been verified experimentally.

MSC codes

  1. 92C05
  2. 92C17
  3. 35K57

Keywords

  1. modeling microstructures
  2. reaction-diffusion equations
  3. dendritic spines
  4. calcium
  5. stochastic dynamics

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
S. Ramón y Cajal, Histologie du système nerveux de l’homme et des vertébrés, L. Azouly, transl. Malaine. Paris, France 1909.
“New ideas on the structure of the nervous system of man and vertebrates,” translated by N. and N. L. Swanson from Les nouvelles idées sur la structure du système nerveux chez l’homme et chez les vertébrés, MIT Press, Cambridge, MA, 1991.
2.
E. R. Kandel, J. H. Schwartz, and T. M. Jessel, Principles of Neural Science, 4th ed., McGraw‐Hill, New York, 2001.
3.
R. Yuste and W. Denk, Dendritic spines as basic functional units of neuronal integration, Nature, 375 (1995), pp. 682–684.
4.
T. Bonhoeffer and R. Yuste, Spine motility: Phenomenology, mechanisms, and function, Neuron, 35 (2002), pp. 1019–1027.
5.
C. Koch and I. Segev, eds., Methods in Neuronal Modeling, MIT Press, Cambridge, MA, 1998.
6.
C. Koch, Biophysics of Computation, Oxford University Press, New York, 1999.
7.
C. Koch and A. Zador, The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization, J. Neurosci., 13 (1993), pp. 413–422.
8.
A. Zador, C. Koch, and T. H. Brown, Biophysical model of a hebbian synapse, Proc. Natl. Acad. Sci. USA, 87 (1990), pp. 6718–6722.
9.
G. M. Shepherd, The dendritic spine: A multi‐functional integrative unit, J. Neurophysiol., 75 (1996), pp. 2197–2210.
10.
I. Segev and W. Rall, Computational study of an excitable dendritic spine, J. Neurophysiol., 60 (1988), pp. 499–523.
11.
R. S. Zucker and W. G. Regehr, Short‐term synaptic plasticity, Ann. Rev. Physiol., 64 (2002), pp. 355–405.
12.
E. Korkotian and M. Segal, Spike‐associated fast twitches of dendritic spines in cultured hippocampal neurons, Neuron, 30 (2001), pp. 751–758.
13.
F. Blomberg, R. S. Cohen, and P. Siekevitz, The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure, J. Cell Biol., 74 (1977), pp. 204–225.
14.
F. Crick, Do dendritic spines twitch?, Trends Neurosci., 5 (1982), pp. 44–46.
15.
N. Volfovsky, H. Parnas, M. Segal, and E. Korkotian, Geometry of dendritic spines affects calcium dynamics in hippocampal neurons: Theory and experiments, J. Neurophysiol., 82 (1999), pp. 450–454.
16.
J. Lisman, The CaM kinase II hypothesis for the storage of synaptic memory, Trends Neurosci., 10 (1994), pp. 406–412.
17.
J. Lisman, H. Schulman, and H. Cline, The molecular basis of CaMKII function in synaptic and behavioural memory, Nat. Rev. Neurosci., 3 (2002), pp. 175–190.
18.
A. Majewska, A. Tashiro, and R. Yuste, Regulation of spine calcium dynamics by rapid spine motility, J. Neurosci., 20 (2000), pp. 8262–8268.
19.
A. Majewska, E. Brown, J. Ross, and R. Yuste, Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization, J. Neurosci., 20 (2000), pp. 1722–1734.
20.
A. Dunaevsky, A. Tashiro, A. Majewska, C. Mason, and R. Yuste, Developmental regulation of spine motility in the mammalian central nervous system, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 13438–13443.
21.
E. A. Nimchinsky, B. L. Sabatini, and K. Svoboda, Structure and function of dendritic spines, Annu. Rev Physiol., 64 (2002), pp. 313–353.
22.
K. M. Franks and T. J. Sejnowski, Complexity of calcium signaling in synaptic spines, Bioessays, 24 (2002), pp. 1130–1144.
23.
M. Fischer, S. Kaech, U. Wagner, H. Brinkhaus, and A. Matus, Glutamate receptors regulate actin‐based plasticity in dendritic spines, Nat. Neurosci., 3 (2000), pp. 887–894.
24.
M. Fischer, S. Kaech, D. Knutti, and A. Matus, Rapid actin‐based plasticity in dendritic spines, Neuron, 20 (1998), pp. 847–854.
25.
M. Morales and E. Fifkova, Distribution of MAP2 in dendritic spines and its colocalization with actin. An immunogold electron‐microscope study, Cell Tissue Res., 256 (1989), pp. 447–456.
26.
D. Holcman, Z. Schuss, and E. Korkotian, Calcium dynamics in dendritic spines and spine motility, Biophysical Journal, 87 (2004), pp. 81–91.
27.
M. Segal, private communication.
28.
R. C. Malenka and R. A. Nicoll, Long‐term potentiation—A decade of progress?, Science, 285 (1999), pp. 1870–1874.
29.
B. J. Berne and R. Pecora, Dynamic Light Scattering, John Wiley & Sons, New York, 1978.
30.
Zeev Schuss, Theory and applications of stochastic differential equations, John Wiley & Sons Inc., 1980xiii+321, Wiley Series in Probability and Statistics
31.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Elmsford, NY, 1975.
32.
B. Nadler, T. Naeh, Z. Schuss, The stationary arrival process of independent diffusers from a continuum to an absorbing boundary is Poissonian, SIAM J. Appl. Math., 62 (2001), 433–447
33.
S. Chandrasekhar, Noise and stochastic process in physics and astronomy, Rev. Mod. Phys., 15 (1943), p. 1.
34.
Peter Hanggi, Peter Talkner, Michal Borkovec, Reaction‐rate theory: fifty years after Kramers, Rev. Modern Phys., 62 (1990), 251–341
35.
B. Matkowsky, Z. Schuss, The exit problem for randomly perturbed dynamical systems, SIAM J. Appl. Math., 33 (1977), 365–382
36.
D. Holcman and Z. Schuss, Kinetics of non‐Arrhenius reactions, preprint.
37.
B. L. Sabatini, M. Maravall, and K. Svoboda, Ca2+ signalling in dendritic spines, Curr. Opin. Neurobiol., 11 (2001), pp. 349–356.