Abstract

Permanent charge is the major structural quantity of an ion channel. It defines the ion channel and its interaction with boundary conditions plays the predominate role for ionic flow properties or functions of the ion channel. In this work, we investigate effects of large magnitude permanent charges of a simple form on the ionic flow of a 1:1 solution (an ionic mixture with one positive charged ion species and one negatively charged ion species). The analysis is based on a quasi-one-dimensional classical steady-state Poisson--Nernst--Planck model. Our findings include (i) large permanent charges produce flux and current saturations at large transmembrane electric potentials; (ii) large permanent charges inhibit the flux of co-ions (ions with the same charge sign) but could either enhance or reduce the flux of counter-ions (ions with opposite charge signs), depending on boundary conditions and the channel geometry; (iii) the magnitude of the co-ion flux is decreasing with an increase in magnitude of the large permanent charge but the counter-ion flux could either decease or increase with an increase in magnitude of the large permanent charge, depending on boundary conditions and the channel geometry, and quite significantly; (iv) large permanent charges are responsible for the counterintuitive declining phenomenon---an increase in the electrochemical potential of counter-ion species in a particular manner leads to a reduction of the counter-ion flux. We would like to stress that the model in this paper includes only the ideal components of the electrochemical potentials so the model cannot be used to study some critical properties of ion channels such as selectivity and gating. Our work should be viewed as the first step of future analyses/numerics with more structural detail and more correlations between ions included. The basic findings in this work should provide guidance for further investigation.

Keywords

  1. large permanent charge
  2. current saturation
  3. declining phenomenon

MSC codes

  1. 34A26
  2. 34B16
  3. 78A35

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
P. Bates, Y. Jia, G. Lin, H. Lu, and M. Zhang, Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 410--430, http://doi.org/10.1137/16M1071523.
2.
P. Bates, W. Liu, H. Lu, and M. Zhang, Ion size and valence effects on ionic flows via Poisson-Nernst-Planck models, Commun. Math. Sci., 15 (2017), pp. 881--901, http://doi.org/10.4310/CMS.2017.v15.n4.a1.
3.
F. Bezanilla, The voltage sensor in voltage-dependent ion channels, Phys. Rev., 80 (2000), pp. 555--592, http://doi.org/10.1152/physrev.2000.80.2.555.
4.
B. Eisenberg, Ion channels as device, J. Comput. Electronics, 2 (2003), pp. 245--249, http://doi.org/10.1023/B:JCEL.0000011432.03832.22.
5.
B. Eisenberg, Ions in fluctuating channels: Transistors alive, Fluct. Noise Lett., 11 (2012), http://doi.org/10.1142/S0219477512400019.
6.
B. Eisenberg, Can We Make Biochemistry an Exact Science?, http://arxiv.org/abs/1409.0243, 2014.
7.
B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 38 (2007), pp. 1932--1966, http://doi.org/10.1137/060657480.
8.
B. Eisenberg and W. Liu, Relative dielectric constants and selectivity ratios in open ionic channels, Mol. Based Math. Biol., 5 (2017), pp. 125--137, http://doi.org/10.1515/mlbmb-2017-0008.
9.
B. Eisenberg, W. Liu, and H. Xu, Reversal permanent charge and reversal potential: Case studies via classical Poisson-Nernst-Planck models, Nonlinearity, 28 (2015), pp. 103--127, http://doi.org/10.1088/0951-7715/28/1/103.
10.
J. Griffiths and C. Sansom, The Transporter Facts Book, Academic Press, New York, 1997.
11.
F. Helfferich, Ion Exchange, McGraw-Hill, New York, 1995.
12.
B. Hille, Textbook of Physiology, Vol. 1, Saunders, Philadelphia, 1989.
13.
B. Hille, Ion Channels of Excitable Membranes, 3rd ed., Sinauer Associates, Sunderland, MA, 2001.
14.
A. L. Hodgkin, The ionic basis of electrical activity in nerve and muscle, Biol. Rev., 26 (1951), pp. 339--409, http://doi.org/10.1111/j.1469-185X.1951.tb01204.x.
15.
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.), 117 (1952), pp. 500--544, http://doi.org/10.1113/jphysiol.1952.sp004764.
16.
A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fibre, J. Physiol., 128 (1955), pp. 61--88, http://doi.org/10.1113/jphysiol.1955.sp005291.
17.
S. Ji, B. Eisenberg, and W. Liu, Flux ratios and channel structures, J. Dynam. Differential Equations, 31 (2019), pp. 1141--1183, http://doi.org/10.1007/s10884-017-9607-1.
18.
S. Ji and W. Liu, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part I: Analysis, J. Dynam. Differential Equations, 24 (2012), pp. 955--983, http://doi.org/10.1007/s10884-012-9277-y.
19.
S. Ji, W. Liu, and M. Zhang, Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math., 75 (2015), pp. 114--135, http://doi.org/10.1137/140992527.
20.
C. Jones, Geometric singular perturbation theory, in Dynamical Systems, Lecture Notes in Math. 1609, Springer, Berlin, 1995, pp. 44--118.
21.
C. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Differential Equations, 108 (1994), pp. 64--88, http://doi.org/10.1006/jdeq.1994.1025.
22.
G. Lin, W. Liu, Y. Yi, and M. Zhang, Poisson-Nernst-Planck systems for ion flow with a local hard-sphere potential for ion size effects, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 1613--1648, http://doi.org/10.1137/120904056.
23.
W. Liu, Exchange lemmas for singular perturbations with certain turning points, J. Differential Equations, 167 (2000), pp. 134--180, http://doi.org/10.1006/jdeq.2000.3778.
24.
W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 65 (2005), pp. 754--766, http://doi.org/10.1137/S0036139903420931.
25.
W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differential Equations, 246 (2009), pp. 428--451, http://doi.org/10.1016/j.jde.2008.09.010.
26.
W. Liu, A flux ratio and a universal property of permanent charges effects on fluxes, Comput. Math. Biophys., 6 (2018), pp. 28--40, http://doi.org/10.1515/cmb-2018-0003.
27.
W. Liu, X. Tu, and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part II: Numerics, J. Dynam. Differential Equations, 24 (2012), pp. 985--1004, http://doi.org/10.1007/s10884-012-9278-x.
28.
W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), pp. 413--437, http://doi.org/10.1007/s10884-010-9186-x.
29.
W. Liu and H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differerential Equations, 258 (2015), pp. 1192--1228, http://doi.org/10.1016/j.jde.2014.10.015.
30.
W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels, Biophys. J., 75 (1998), pp. 1287--1305, http://doi.org/10.1016/S0006-3495(98)74048-2.
31.
I. Rubinstein, Electro-Diffusion of Ions, SIAM, Philadelphia, 1990.
32.
B. Sakmann and E. Neher, Single Channel Recording, 2nd ed., Plenum, New York, 1995.
33.
L. Sun and W. Liu, Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: A case study, J. Dynam. Differential Equations, 30 (2018), pp. 779--797, http://doi.org/10.1007/s10884-017-9578-2.
34.
S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.
35.
S.-K. Tin, N. Kopell, and C. Jones, Invariant manifolds and singularly perturbed boundary value problems, SIAM J. Numer. Anal., 31 (1994), pp. 1558--1576, http://doi.org/10.1137/0731081.
36.
H. H. Ussing, Interpretation of the exchange of radio-sodium in isolated muscle, Nature, 160 (1947), pp. 262--263, http://doi.org/10.1038/160262a0.
37.
H. H. Ussing, The distinction by means of tracers between active transport and diffusion, Acta Physiol. Scand., 19 (1949), pp. 43--56, http://doi.org/10.1111/j.1748-1716.1949.tb00633.x.
38.
L. Zhang, B. Eisenberg, and W. Liu, An effect of large permanent charge: Decreasing flux with increasing transmembrane potentia, Eur. Phys. J. Special Topics, 227 (2019), pp. 2575--2601, http://doi.org/10.1140/epjst/e2019-700134-7.