Abstract

We consider a model for two lasers that are mutually coupled optoelectronically by modulating the pump of one laser with the intensity deviations of the other. Signal propagation time in the optoelectronic loop causes a significant delay leading to the onset of oscillatory output. Multiscale perturbation methods are used to describe the amplitude and period of oscillations as a function of the coupling strength and delay time. For weak coupling the oscillations have the laser’s relaxation period, and the amplitude varies as the one‐fourth power of the parameter deviations from the bifurcation point. For order‐one coupling strength the period is determined as multiples of the delay time, and the amplitude varies with a square‐root power law. Because we allow for independent control of the individual coupling constants, for certain parameter values there is an atypical amplitude‐resonance phenomena. Finally, our theoretical results are consistent with recent experimental observations when the inclusion of a low‐pass filter in the coupling loop is taken into account.

MSC codes

  1. 34D15
  2. 37G15
  3. 39A11
  4. 78A60

Keywords

  1. coupled lasers
  2. delay
  3. Hopf bifurcation
  4. resonance

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
M.‐Y. Kim, R. Roy, J. L. Aron, T. W. Carr, and I. B. Schwartz, Scaling behavior of laser population dynamics with time‐delayed coupling: Theory and experiment, Phys. Rev. Lett., 94 (2005), 088101.
2.
T. W. Carr, M. L. Taylor, and I. B. Schwartz, Negative‐coupling resonances in pump‐coupled lasers, Phys. D, 215 (2006), pp. 152–163.
3.
H. Yaska and H. Kawaguchi, Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback, Appl. Phys. Lett., 53 (1988), pp. 1360–1362.
4.
R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection laser properties, IEEE J. Quantum Electron., 16 (1980), pp. 347–355.
5.
G. H. M. van Tartwijk and D. Lenstra, Semiconductor lasers with optical injection and feedback, Quantum Semiclass. Opt., 7 (1995), pp. 87–143.
6.
J. Javaloyes, P. Mandel, and D. Pieroux, Dynamical properties of lasers coupled face to face, Phys. Rev. E, 67 (2003), 036201.
7.
H. Erzgräber, B. Krauskopf, and D. Lenstra, Compound laser modes of mutually delay‐coupled lasers, SIAM J. Appl. Dyn. Syst., 5 (2006), pp. 30–65.
8.
R. D. Li, P. Mandel, and T. Erneux, Periodic and quasiperiodic regimes in self‐coupled lasers, Phys. Rev. A, 41 (1990), pp. 5117–5126.
9.
D. Pieroux, T. Erneux, and K. Otsuka, Minimal model of a class‐b laser with delayed feedback: Cascading branching of periodic solutions and period‐doubling bifurcation, Phys. Rev. E, 50 (1994), pp. 1822–1829.
10.
D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Blackburn, Two‐field description of chaos synchronization in diode lasers with incoherent optical feedback and injection, in Proceedings of SPIE, Proc. SPIE 5722, SPIE, Bellingham, WA, 2005, pp. 256–258.
11.
R. Vicente, S. Tang, J. Mulet, C. R. Mirasso, and J. M. Liu, Dynamics of semiconductor lasers with bidirectional optoelectronic coupling: Stability, route to chaos and entrainment, Phys. Rev. E, 70 (2004), 046216.
12.
R. Vicente, S. Tang, J. Mulet, C. R. Mirasso, and J. M. Liu, Synchronization properties of two self‐oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling, Phys. Rev. E, 73 (2006), 047201.
13.
D. V. R. Reddy, A. Sen, and G. L. Johnston, Driven response of time delay coupled limit cycle oscillators, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), pp. 493–518.
14.
A. K. Sen and R. H. Rand, A numerical investigation of the dynamics of a system of two time‐delay coupled relaxation oscillators, Comm. Pure Appl. Math., 2 (2003), pp. 567–577.
15.
S. Wirkus and R. Rand, The dynamics of two coupled Van der Pol oscillators with delay coupling, Nonlinear Dynam., 30 (2002), pp. 205–221.
16.
D. V. R. Reddy, A. Sen, and G. L. Johnston, Time delay induced death in coupled limit cycle oscillators, Phys. Rev. Lett., 80 (1998), pp. 5109–5112.
17.
S. R. Campbell and D. L. Wang, Relaxation oscillators with time delay coupling, Phys. D, 111 (1998), pp. 151–178.
18.
S. G. Lee, S. Kim, and H. Kook, Synchrony and clustering in two and three synaptically coupled Hodgkin‐Huxley neurons with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), pp. 889–895.
19.
M. K. S. Yeung and S. H. Strogatz, Time delay in the Kuromoto model of coupled oscillators, Phys. Rev. Lett., 82 (1999), pp. 648–651.
20.
N. B. Abraham, P. Mandel, and L. M. Narducci, Dynamical instabilities and pulsations in lasers, Prog. Opt., 25 (1988), pp. 3–190.
21.
D. Pieroux, T. Erneux, A. Gavrielides, and V. Kovanis, Hopf bifurcation subject to a large delay in a laser system, SIAM J. Appl. Math., 61 (2000), pp. 966–982.
22.
M.‐Y. Kim, Delay Induced Instabilities in Coupled Semiconductor Lasers and Mack‐Glass Electronic Circuits, Ph.D. thesis, University of Maryland, College Park, MD, 2005.
23.
C. Chicone and Z. C. Feng, Synchronization phenomena for coupled delay‐line oscillators, Phys. D, 198 (2004), pp. 212–230.
24.
D. V. R. Reddy, A. Sen, and G. L. Johnston, Time delay effects on coupled limit cycle oscillators at Hopf bifurcation, Phys. D, 129 (1999), pp. 15–34.
25.
F. T. Arecchi, G. L. Lippi, G. P. Poccioni, and J. R. Tredicce, Deterministic chaos in laser with injected signal, Optics Comm., 51 (1984), pp. 308–314.
26.
P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, Cambridge Studies in Modern Optics, Cambridge University Press, New York, 1997.
27.
I. B. Schwartz and T. Erneux, Subharmonic hysteresis and period doubling bifurcations for a periodically driven laser, SIAM J. Appl. Math., 54 (1994), pp. 1083–1100.
28.
F. Rogister, D. Pieroux, M. Sciamanna, P. Megret, and M. Blondel, Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications, Opt. Commun., 207 (2002), pp. 295–306.
29.
W. Govaerts, J. Guckenheimer, and A. Khibnik, Defining functions for multiple Hopf bifurcations, SIAM J. Numer. Anal., 34 (1997), pp. 1269–1288.
30.
R. D. Driver, Ordinary and Delay Differential Equations, Springer‐Verlag, New York, 1977.
31.
R. D. Driver, D. W. Sasser, and M. L. Slater, The equation $x'(t)=ax(t)+b(t-\tau)$ with “small” delay, Amer. Math. Monthly, 80 (1973), pp. 990–995.
32.
L. E. El’sgol’ts and S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Math. Sci. Engrg. 105, Academic Press, New York, 1973.
33.
K. Engelborghs, T. Luzyanina, and G. Samaey, DDE‐BIFTOOL v.$2.00$ User Manual: A MATLAB Package for Bifurcation Analysis of Delay Differential Equations, Technical report TW‐330, Department of Computer Science, K. U. Leuven, Leuven, Belgium, 2001.
34.
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems, Springer‐Verlag, New York, 1990.
35.
L. Illing and D. J. Gauthier, Hopf bifurcations in time‐delay systems with band‐limited feedback, Phys. D, 210 (2005), pp. 180–202.