24
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A Simulation Study of the Performance of Five Discriminant Analysis Methods for Mixtures of Continuous and Binary Variables

, &
Pages 69-95 | Received 27 Apr 1984, Published online: 20 Mar 2007
 

Abstract

The present study investigates the performance of fice discrimination methods for data consisting of a mixture of continuous and binary variables. The methods are Fisher’s linear discrimination, logistic discrimination, quadratic discrimination, a kernal model and an independence model. Six-dimensional data, consisting of three binary and three continuous variables, are simulated according to a location model. The results show an almost identical performance for Fisher’s linear discrimination and logistic discrimination. Only in situations with independently distributed variables the independence model does have a reasonable discriminatory ability for the dimensionality considered. If the log likelihood ratio is non-linear ratio is non-linear with respect to its continuous and binary part, the quadratic discrimination method is substantial better than linear and logistic discrimination, followed by the kernel method. A very good performance is obtained when in every situation the better one of linear and quardratic discrimination is used.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.