メインコンテンツまでスキップ
メインコンテンツまでスキップ

Environmental Sensors Data

Sensors.Communityは、オープンな環境データを作成するために貢献者主導のグローバルセンサーネットワークです。データは世界中のセンサーから収集されます。誰でもセンサーを購入し、好きな場所に設置することができます。データをダウンロードするためのAPIはGitHubで利用可能で、データはDatabase Contents License (DbCL)の下で自由に利用可能です。

参考

データセットには200億件以上のレコードが含まれているため、リソースがその量を処理できる限り、以下のコマンドをコピー&ペーストすることに注意してください。以下のコマンドはClickHouse CloudProductionインスタンスで実行されました。

  1. データはS3にあり、s3テーブル関数を使用してファイルからテーブルを作成できます。また、データをそのままクエリすることも可能です。ClickHouseに挿入する前に、いくつかの行を見てみましょう:
SELECT *
FROM s3(
    'http://clickhouse-public-datasets.s3.eu-central-1.amazonaws.com/sensors/monthly/2019-06_bmp180.csv.zst',
    'CSVWithNames'
   )
LIMIT 10
SETTINGS format_csv_delimiter = ';';

データはCSVファイルですが、区切り文字としてセミコロンが使用されています。行は次のようになります:

┌─sensor_id─┬─sensor_type─┬─location─┬────lat─┬────lon─┬─timestamp───────────┬──pressure─┬─altitude─┬─pressure_sealevel─┬─temperature─┐
│      9119 │ BMP180      │     4594 │ 50.994 │  7.126 │ 2019-06-01T00:00:00 │    101471 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │        19.9 │
│     21210 │ BMP180      │    10762 │ 42.206 │ 25.326 │ 2019-06-01T00:00:00 │     99525 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │        19.3 │
│     19660 │ BMP180      │     9978 │ 52.434 │ 17.056 │ 2019-06-01T00:00:04 │    101570 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │        15.3 │
│     12126 │ BMP180      │     6126 │ 57.908 │  16.49 │ 2019-06-01T00:00:05 │ 101802.56 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │        8.07 │
│     15845 │ BMP180      │     8022 │ 52.498 │ 13.466 │ 2019-06-01T00:00:05 │    101878 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │          23 │
│     16415 │ BMP180      │     8316 │ 49.312 │  6.744 │ 2019-06-01T00:00:06 │    100176 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │        14.7 │
│      7389 │ BMP180      │     3735 │ 50.136 │ 11.062 │ 2019-06-01T00:00:06 │     98905 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │        12.1 │
│     13199 │ BMP180      │     6664 │ 52.514 │  13.44 │ 2019-06-01T00:00:07 │ 101855.54 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │       19.74 │
│     12753 │ BMP180      │     6440 │ 44.616 │  2.032 │ 2019-06-01T00:00:07 │     99475 │ ᴺᵁᴸᴸ     │ ᴺᵁᴸᴸ              │          17 │
│     16956 │ BMP180      │     8594 │ 52.052 │  8.354 │ 2019-06-01T00:00:08 │    101322 │ ᴺᵁᴾᴾ     │ ᴺᵁᴸᴸ              │        17.2 │
└───────────┴─────────────┴──────────┴────────┴────────┴─────────────────────┴───────────┴──────────┴───────────────────┴─────────────┘
  1. ClickHouseにデータを保存するために、次のMergeTreeテーブルを使用します:
CREATE TABLE sensors
(
    sensor_id UInt16,
    sensor_type Enum('BME280', 'BMP180', 'BMP280', 'DHT22', 'DS18B20', 'HPM', 'HTU21D', 'PMS1003', 'PMS3003', 'PMS5003', 'PMS6003', 'PMS7003', 'PPD42NS', 'SDS011'),
    location UInt32,
    lat Float32,
    lon Float32,
    timestamp DateTime,
    P1 Float32,
    P2 Float32,
    P0 Float32,
    durP1 Float32,
    ratioP1 Float32,
    durP2 Float32,
    ratioP2 Float32,
    pressure Float32,
    altitude Float32,
    pressure_sealevel Float32,
    temperature Float32,
    humidity Float32,
    date Date MATERIALIZED toDate(timestamp)
)
ENGINE = MergeTree
ORDER BY (timestamp, sensor_id);
  1. ClickHouse Cloudサービスには defaultという名前のクラスターがあります。s3Clusterテーブル関数を使用すると、クラスター内のノードからS3ファイルを並列で読み取ることができます。(クラスターがない場合は、s3関数を使用し、クラスター名を削除してください。)

このクエリはしばらく時間がかかります。データは圧縮されずに約1.67Tです:

INSERT INTO sensors
    SELECT *
    FROM s3Cluster(
        'default',
        'http://clickhouse-public-datasets.s3.amazonaws.com/sensors/monthly/*.csv.zst',
        'CSVWithNames',
        $$ sensor_id UInt16,
        sensor_type String,
        location UInt32,
        lat Float32,
        lon Float32,
        timestamp DateTime,
        P1 Float32,
        P2 Float32,
        P0 Float32,
        durP1 Float32,
        ratioP1 Float32,
        durP2 Float32,
        ratioP2 Float32,
        pressure Float32,
        altitude Float32,
        pressure_sealevel Float32,
        temperature Float32,
        humidity Float32 $$
    )
SETTINGS
    format_csv_delimiter = ';',
    input_format_allow_errors_ratio = '0.5',
    input_format_allow_errors_num = 10000,
    input_format_parallel_parsing = 0,
    date_time_input_format = 'best_effort',
    max_insert_threads = 32,
    parallel_distributed_insert_select = 1;

ここでの応答は、行数と処理速度を示しています。入力速度は1秒あたり6M行を超えています!

0 rows in set. Elapsed: 3419.330 sec. Processed 20.69 billion rows, 1.67 TB (6.05 million rows/s., 488.52 MB/s.)
  1. sensorsテーブルに必要なストレージディスクのサイズを確認しましょう:
SELECT
    disk_name,
    formatReadableSize(sum(data_compressed_bytes) AS size) AS compressed,
    formatReadableSize(sum(data_uncompressed_bytes) AS usize) AS uncompressed,
    round(usize / size, 2) AS compr_rate,
    sum(rows) AS rows,
    count() AS part_count
FROM system.parts
WHERE (active = 1) AND (table = 'sensors')
GROUP BY
    disk_name
ORDER BY size DESC;

1.67Tは310GiBに圧縮され、20.69億行があります:

┌─disk_name─┬─compressed─┬─uncompressed─┬─compr_rate─┬────────rows─┬─part_count─┐
│ s3disk    │ 310.21 GiB │ 1.30 TiB     │       4.29 │ 20693971809 │        472 │
└───────────┴────────────┴──────────────┴────────────┴─────────────┴────────────┘
  1. データがClickHouseに入ったので、分析を始めましょう。より多くのセンサーが展開されるにつれて、データの量が時間とともに増加していることに注意してください:
SELECT
    date,
    count()
FROM sensors
GROUP BY date
ORDER BY date ASC;

これはSQLコンソールで結果を視覚化するためのチャートを作成できるものです:

1日あたりのイベント数
  1. このクエリでは、非常に暑く湿度の高い日の数をカウントします:
WITH
    toYYYYMMDD(timestamp) AS day
SELECT day, count() FROM sensors
WHERE temperature >= 40 AND temperature <= 50 AND humidity >= 90
GROUP BY day
ORDER BY day asc;

結果の可視化は次の通りです:

暑く湿度の高い日々