Computer Science > Machine Learning
[Submitted on 4 Nov 2024 (v1), last revised 2 Dec 2024 (this version, v4)]
Title:Combining Induction and Transduction for Abstract Reasoning
View PDFAbstract:When learning an input-output mapping from very few examples, is it better to first infer a latent function that explains the examples, or is it better to directly predict new test outputs, e.g. using a neural network? We study this question on ARC by training neural models for induction (inferring latent functions) and transduction (directly predicting the test output for a given test input). We train on synthetically generated variations of Python programs that solve ARC training tasks. We find inductive and transductive models solve different kinds of test problems, despite having the same training problems and sharing the same neural architecture: Inductive program synthesis excels at precise computations, and at composing multiple concepts, while transduction succeeds on fuzzier perceptual concepts. Ensembling them approaches human-level performance on ARC.
Submission history
From: Wen-Ding Li [view email][v1] Mon, 4 Nov 2024 17:03:55 UTC (3,686 KB)
[v2] Sun, 17 Nov 2024 09:55:35 UTC (3,612 KB)
[v3] Tue, 19 Nov 2024 17:29:58 UTC (3,612 KB)
[v4] Mon, 2 Dec 2024 12:36:30 UTC (3,612 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.