Turing Machine as Comparator Last Updated : 11 Jul, 2025 Comments Improve Suggest changes 3 Likes Like Report Prerequisite – Turing MachineProblem : Draw a turing machine which compare two numbers. Using unary format to represent the number. For example, 4 is represented by 4 = 1 1 1 1 or 0 0 0 0 Lets use one's for representation. Example: Approach: Comparing two numbers by comparing number of '1's.Comparing '1's by marking them 'X'.If '1's are remaining in left of '0', then first number is greater.If '1's are remaining in right of '0', then second number is greater.If both '1' are finished then both numbers are equal. Steps: Step-1: Convert 1 into X and move right and goto step 2. If symbol is 0 ignore it and move right and goto step-6. Step-2: Keep ignoring 1 and move towards right. Ignore 0 move right and goto step-3.Step-3: Keep ignoring X and move towards right. Ignore 1 move left and goto step-4. If B is found ignore it and move left and goto step-9.Step-4: Keep ignoring X and move towards left. Ignore 0 move left and goto step-5.Step-5: Keep ignoring 1 and move towards left. Ignore X move right and goto step-1.Step-6: Keep ignoring X and move towards right. If B is found ignore it and move left and goto step-8. If 1 is found ignore it and move right and goto step-7.Step-7: Stop the Machine (A < B)Step-8: Stop the Machine (A > B)Step-9: Stop the Machine (A = B) State transition diagram : Comparator for A < BComparator for A = BComparator for A > BUniversal Comparator for A < B, A = B, A > B Here, Q0 shows the initial state and Q2, Q3, Q4, Q5 shows the transition state and (A < B), (A = B)and (A > B) shows the final state. 0, 1 are the variables used and R, L shows right and left. Explanation: Using Q0, when 1 is found make it X and go to leftand to state Q1. and if 0 found move to right to Q5 state.On the state Q1, ignore all 1 and goto right.If 0 found ignore it and goto right into next state Q2.In Q2, ignore all X and move right.If B found stop the execution and you will goto the state showing A > B, If 1 found make it X move left and to Q3.In Q3 state, ignore all X and move left.If 0 found ignore it move left to Q4.In Q4, ignore all 1 and move left.If X found ignore it move right.In Q5 state, ignore all X and move right.If 1 found ignore it move right and stop the machine it will give the result that A < B.And if, B found move left to stop the machine it will give the result that A = B Comment S shubhamsingh10 Follow 3 Improve S shubhamsingh10 Follow 3 Improve Article Tags : GATE CS Theory of Computation Explore Automata _ IntroductionIntroduction to Theory of Computation5 min readChomsky Hierarchy in Theory of Computation2 min readApplications of various Automata4 min readRegular Expression and Finite AutomataIntroduction of Finite Automata3 min readArden's Theorem in Theory of Computation6 min readSolving Automata Using Arden's Theorem6 min readL-graphs and what they represent in TOC4 min readHypothesis (language regularity) and algorithm (L-graph to NFA) in TOC7 min readRegular Expressions, Regular Grammar and Regular Languages7 min readHow to identify if a language is regular or not8 min readDesigning Finite Automata from Regular Expression (Set 1)4 min readStar Height of Regular Expression and Regular Language3 min readGenerating regular expression from Finite Automata3 min readCode Implementation of Deterministic Finite Automata (Set 1)8 min readProgram for Deterministic Finite Automata7 min readDFA for Strings not ending with "THE"12 min readDFA of a string with at least two 0âs and at least two 1âs3 min readDFA for accepting the language L = { anbm | n+m =even }14 min readDFA machines accepting odd number of 0âs or/and even number of 1âs3 min readDFA of a string in which 2nd symbol from RHS is 'a'10 min readUnion Process in DFA4 min readConcatenation Process in DFA3 min readDFA in LEX code which accepts even number of zeros and even number of ones6 min readConversion from NFA to DFA5 min readMinimization of DFA7 min readReversing Deterministic Finite Automata4 min readComplementation process in DFA2 min readKleene's Theorem in TOC | Part-13 min readMealy and Moore Machines in TOC3 min readDifference Between Mealy Machine and Moore Machine4 min readCFGRelationship between grammar and language in Theory of Computation4 min readSimplifying Context Free Grammars6 min readClosure Properties of Context Free Languages11 min readUnion and Intersection of Regular languages with CFL3 min readConverting Context Free Grammar to Chomsky Normal Form5 min readConverting Context Free Grammar to Greibach Normal Form6 min readPumping Lemma in Theory of Computation4 min readCheck if the language is Context Free or Not4 min readAmbiguity in Context free Grammar and Languages3 min readOperator grammar and precedence parser in TOC6 min readContext-sensitive Grammar (CSG) and Language (CSL)2 min readPDA (Pushdown Automata)Introduction of Pushdown Automata5 min readPushdown Automata Acceptance by Final State4 min readConstruct Pushdown Automata for given languages4 min readConstruct Pushdown Automata for all length palindrome6 min readDetailed Study of PushDown Automata3 min readNPDA for accepting the language L = {anbm cn | m,n>=1}2 min readNPDA for accepting the language L = {an bn cm | m,n>=1}2 min readNPDA for accepting the language L = {anbn | n>=1}2 min readNPDA for accepting the language L = {amb2m| m>=1}2 min readNPDA for accepting the language L = {am bn cp dq | m+n=p+q ; m,n,p,q>=1}2 min readConstruct Pushdown automata for L = {0n1m2m3n | m,n ⥠0}3 min readConstruct Pushdown automata for L = {0n1m2n+m | m, n ⥠0}2 min readNPDA for accepting the language L = {ambncm+n | m,n ⥠1}2 min readNPDA for accepting the language L = {amb(m+n)cn| m,n ⥠1}3 min readNPDA for accepting the language L = {a2mb3m|m>=1}2 min readNPDA for accepting the language L = {amb2m+1 | m ⥠1}2 min readNPDA for accepting the language L = {aibjckdl | i==k or j==l,i>=1,j>=1}3 min readConstruct Pushdown automata for L = {a2mc4ndnbm | m,n ⥠0}3 min readNPDA for L = {0i1j2k | i==j or j==k ; i , j , k >= 1}2 min readNPDA for accepting the language L = {anb2n| n>=1} U {anbn| n>=1}2 min readNPDA for the language L ={wÐ{a,b}* | w contains equal no. of a's and b's}3 min readTuring MachineTuring Machine in TOC7 min readTuring Machine for addition3 min readTuring machine for subtraction | Set 12 min readTuring machine for multiplication2 min readTuring machine for copying data2 min readConstruct a Turing Machine for language L = {0n1n2n | nâ¥1}3 min readConstruct a Turing Machine for language L = {wwr | w ∈ {0, 1}}5 min readConstruct a Turing Machine for language L = {ww | w ∈ {0,1}}7 min readConstruct Turing machine for L = {an bm a(n+m) | n,mâ¥1}3 min readConstruct a Turing machine for L = {aibjck | i*j = k; i, j, k ⥠1}2 min readTuring machine for 1's and 2âs complement3 min readRecursive and Recursive Enumerable Languages in TOC6 min readTuring Machine for subtraction | Set 22 min readHalting Problem in Theory of Computation4 min readTuring Machine as Comparator3 min readDecidabilityDecidable and Undecidable Problems in Theory of Computation6 min readUndecidability and Reducibility in TOC5 min readComputable and non-computable problems in TOC6 min readTOC Interview preparationLast Minute Notes - Theory of Computation13 min readTOC Quiz and PYQ's in TOCTheory of Computation - GATE CSE Previous Year Questions2 min read Like