Python | Pandas DataFrame.values
Last Updated :
20 Feb, 2019
Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas
DataFrame.values attribute return a Numpy representation of the given DataFrame.
Syntax: DataFrame.values
Parameter : None
Returns : array
Example #1: Use
DataFrame.values attribute to return the numpy representation of the given DataFrame.
Python3
# importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({'Weight':[45, 88, 56, 15, 71],
'Name':['Sam', 'Andrea', 'Alex', 'Robin', 'Kia'],
'Age':[14, 25, 55, 8, 21]})
# Print the DataFrame
print(df)
Output :

Now we will use
DataFrame.values attribute to return the numpy representation of the given DataFrame.
Python3 1==
# return the numpy representation of
# this dataframe
result = df.values
# Print the result
print(result)
Output :

As we can see in the output, the
DataFrame.values attribute has successfully returned the numpy representation of the given DataFrame.
Example #2: Use
DataFrame.values attribute to return the numpy representation of the given DataFrame.
Python3
# importing pandas as pd
import pandas as pd
# Creating the DataFrame
df = pd.DataFrame({"A":[12, 4, 5, None, 1],
"B":[7, 2, 54, 3, None],
"C":[20, 16, 11, 3, 8],
"D":[14, 3, None, 2, 6]})
# Print the DataFrame
print(df)
Output :

Now we will use
DataFrame.values attribute to return the numpy representation of the given DataFrame.
Python3 1==
# return the numpy representation of
# this dataframe
result = df.values
# Print the result
print(result)
Output :

As we can see in the output, the
DataFrame.values attribute has successfully returned the numpy representation of the given DataFrame.
Explore
Python Fundamentals
Python Data Structures
Advanced Python
Data Science with Python
Web Development with Python
Python Practice