Nth root of a number using log
Last Updated :
12 Jul, 2025
Given two integers N and K, the task is to find the Nth root of the K.
Examples:
Input: N = 3, K = 8
Output: 2.00
Explanation:
Cube root of 8 is 2. i.e. 23 = 8
Input: N = 2, K = 16
Output: 4.00
Explanation:
Square root of 16 is 4, i.e. 42 = 16
Approach: The idea is to use logarithmic function to find the Nth root of K.
Let D be our Nth root of the K,
Then, N^{\frac{1}{K}} = D
Apply logK on both the sides -
=> log_{K}(N^{\frac{1}{K}}) = log_{K}(D)
=> \frac{1}{K} * log_{K}(N) = log_{K}(D)
=> D = K^{\frac{1}{K} * log_{K}(N)}
Below is the implementation of the above approach:
C++
// C++ implementation to find the
// Kth root of a number using log
#include <bits/stdc++.h>
// Function to find the Kth root
// of the number using log function
double kthRoot(double n, int k)
{
return pow(k,
(1.0 / k)
* (log(n)
/ log(k)));
}
// Driver Code
int main(void)
{
double n = 81;
int k = 4;
printf("%lf ", kthRoot(n, k));
return 0;
}
Java
// Java implementation to find the
// Kth root of a number using log
import java.util.*;
class GFG {
// Function to find the Kth root
// of the number using log function
static double kthRoot(double n, int k)
{
return Math.pow(k, ((1.0 / k) *
(Math.log(n) /
Math.log(k))));
}
// Driver Code
public static void main(String args[])
{
double n = 81;
int k = 4;
System.out.printf("%.6f", kthRoot(n, k));
}
}
// This code is contributed by rutvik_56
Python3
# Python3 implementation to find the
# Kth root of a number using log
import numpy as np
# Function to find the Kth root
# of the number using log function
def kthRoot(n, k):
return pow(k, ((1.0 / k) *
(np.log(n) /
np.log(k))))
# Driver Code
n = 81
k = 4
print("%.6f" % kthRoot(n, k))
# This code is contributed by PratikBasu
C#
// C# implementation to find the
// Kth root of a number using log
using System;
class GFG {
// Function to find the Kth root
// of the number using log function
static double kthRoot(double n, int k)
{
return Math.Pow(k, ((1.0 / k) *
(Math.Log(n) /
Math.Log(k))));
}
// Driver Code
public static void Main(String []args)
{
double n = 81;
int k = 4;
Console.Write("{0:F6}", kthRoot(n, k));
}
}
// This code is contributed by AbhiThakur
JavaScript
<script>
// Javascript implementation to find the
// Kth root of a number using log
// Function to find the Kth root
// of the number using log function
function kthRoot(n, k)
{
return Math.pow(k, ((1.0 / k) *
(Math.log(n) /
Math.log(k))));
}
// Driver Code
var n = 81;
var k = 4;
var x = kthRoot(n, k)
document.write(x.toFixed(6));
// This code is contributed by Ankita saini
</script>
Time Complexity: O(1)
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem