Minimum moves required to change position with the given operation
Last Updated :
02 Jun, 2021
Given two integers S and T and an array arr that contains elements from 1 to N in unsorted fashion. The task is to find the minimum number of moves to move Sth element to the Tth place in the array with the following operation:
A single move consists of the following
// Initially b[] = {1, 2, 3, ..., N}
// arr[] is input array
for (i = 1..n)
temp[arr[i]] = b[i]
b = temp
If not possible then print -1 instead.
Examples:
Input: S = 2, T = 1, arr[] = {2, 3, 4, 1}
Output: 3
N is 4 (size of arr[])
Move 1: b[] = {4, 1, 2, 3}
Move 2: b[] = {3, 4, 1, 2}
Move 3: b[] = {2, 3, 4, 1}
Input: S = 3, T = 4, arr[] = {1, 2, 3, 4}
Output: -1
N is 4 (Size of arr[])
Regardless of how many moves are made, the permutation would remain the same.
Approach: The important observation here is that we are only concerned with the position of a single element, and not the entire array. So at each move we move the element at position S to the position arr[S], until we reach Tth position.
Since there are at most N distinct places that we can reach, if we don't reach T within N moves, it would mean we can never reach it.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
// Function to return the number of moves
int minimumMoves(int n, int a[], int s, int t)
{
int i, x;
x = s;
for (i = 1; i <= n; i++) {
if (x == t)
break;
x = a[x];
}
// Destination reached
if (x == t)
return i - 1;
else
return -1;
}
// Driver Code
int main()
{
int s = 2, t = 1, i;
int a[] = {-1, 2, 3, 4, 1};
int n = sizeof(a) / sizeof(a[0]);
cout << minimumMoves(n, a, s, t);
}
Java
// Java implementation of the approach
public class GFG{
// Function to return the number of moves
static int minimumMoves(int n, int a[], int s, int t)
{
int i, x;
x = s;
for (i = 1; i <= n; i++) {
if (x == t)
break;
x = a[x];
}
// Destination reached
if (x == t)
return i - 1;
else
return -1;
}
// Driver Code
public static void main(String []args){
int s = 2, t = 1, i;
int a[] = {-1, 2, 3, 4, 1};
int n = a.length ;
System.out.println(minimumMoves(n, a, s, t));
}
// This code is contributed by Ryuga
}
Python3
# Python3 implementation of the approach
# Function to return the number of moves
def minimumMoves(n, a, s, t):
x = s
for i in range(1, n+1):
# Destination reached
if x == t:
return i-1
x = a[x]
return -1
# Driver Code
if __name__ == "__main__":
s, t = 2, 1
a = [-1, 2, 3, 4, 1]
n = len(a)
print(minimumMoves(n, a, s, t))
# This code is contributed by Rituraj Jain
C#
// C# implementation of the approach
using System;
public class GFG{
// Function to return the number of moves
static int minimumMoves(int n, int []a, int s, int t)
{
int i, x;
x = s;
for (i = 1; i <= n; i++) {
if (x == t)
break;
x = a[x];
}
// Destination reached
if (x == t)
return i - 1;
else
return -1;
}
// Driver Code
public static void Main(){
int s = 2, t = 1;
int []a = {-1, 2, 3, 4, 1};
int n = a.Length ;
Console.WriteLine(minimumMoves(n, a, s, t));
}
// This code is contributed by inder_verma.
}
PHP
<?php
// PHP implementation of the approach
// Function to return the number of moves
function minimumMoves($n, $a, $s, $t)
{
$i; $x;
$x = $s;
for ($i = 1; $i <= $n; $i++) {
if ($x == $t)
break;
$x = $a[$x];
}
// Destination reached
if ($x == $t)
return $i - 1;
else
return -1;
}
// Driver Code
$s = 2; $t = 1; $i;
$a = array(-1, 2, 3, 4, 1);
$n = count($a);
echo minimumMoves($n, $a, $s, $t);
// This code is contributed by inder_verma.
?>
JavaScript
<script>
// Javascript implementation of the approach
// Function to return the number of moves
function minimumMoves(n, a, s, t)
{
let i, x;
x = s;
for (i = 1; i <= n; i++) {
if (x == t)
break;
x = a[x];
}
// Destination reached
if (x == t)
return i - 1;
else
return -1;
}
let s = 2, t = 1;
let a = [-1, 2, 3, 4, 1];
let n = a.length ;
document.write(minimumMoves(n, a, s, t));
// This code is contributed by suresh07.
</script>
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem