Count of subsets having maximum possible XOR value
Last Updated :
23 Jul, 2025
Given an array arr[] consisting of N positive integers. The task is to count the number of different non-empty subsets of arr[] having maximum bitwise XOR.
Examples:
Input: arr[] = {3, 1}
Output: 1
Explanation: The maximum possible bitwise XOR of a subset is 3.
In arr[] there is only one subset with bitwise XOR as 3 which is {3}.
Therefore, 1 is the answer.
Input: arr[] = {3, 2, 1, 5}
Output: 2
Approach: This problem can be solved by using Bit Masking. Follow the steps below to solve the given problem.
- Initialize a variable say maxXorVal = 0, to store the maximum possible bitwise XOR of a subset in arr[].
- Traverse the array arr[] to find the value of maxXorVal.
- Initialize a variable say countSubsets = 0, to count the number of subsets with maximum bitwise XOR.
- After that count the number of subsets with the value maxXorVal.
- Return countSubsets as the final answer.
Below is the implementation of the above approach.
C++
// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find subsets having maximum XOR
int countMaxOrSubsets(vector<int>& nums)
{
// Store the size of arr[]
long long n = nums.size();
// To store maximum possible
// bitwise XOR subset in arr[]
long long maxXorVal = 0;
// Find the maximum bitwise xor value
for (int i = 0; i < (1 << n); i++) {
long long xorVal = 0;
for (int j = 0; j < n; j++) {
if (i & (1 << j)) {
xorVal = (xorVal ^ nums[j]);
}
}
// Take maximum of each value
maxXorVal = max(maxXorVal, xorVal);
}
// Count the number
// of subsets having bitwise
// XOR value as maxXorVal
long long count = 0;
for (int i = 0; i < (1 << n); i++) {
long long val = 0;
for (int j = 0; j < n; j++) {
if (i & (1 << j)) {
val = (val ^ nums[j]);
}
}
if (val == maxXorVal) {
count++;
}
}
return count;
}
// Driver Code
int main()
{
int N = 4;
vector<int> arr = { 3, 2, 1, 5 };
// Print the answer
cout << countMaxOrSubsets(arr);
return 0;
}
Java
// Java program for above approach
import java.util.*;
public class GFG
{
// Function to find subsets having maximum XOR
static int countMaxOrSubsets(int []nums)
{
// Store the size of arr[]
long n = nums.length;
// To store maximum possible
// bitwise XOR subset in arr[]
long maxXorVal = 0;
// Find the maximum bitwise xor value
for (int i = 0; i < (1 << n); i++) {
long xorVal = 0;
for (int j = 0; j < n; j++) {
if ((i & (1 << j)) == 0) {
xorVal = (xorVal ^ nums[j]);
}
}
// Take maximum of each value
maxXorVal = Math.max(maxXorVal, xorVal);
}
// Count the number
// of subsets having bitwise
// XOR value as maxXorVal
long count = 0;
for (int i = 0; i < (1 << n); i++) {
long val = 0;
for (int j = 0; j < n; j++) {
if ((i & (1 << j)) == 0) {
val = (val ^ nums[j]);
}
}
if (val == maxXorVal) {
count++;
}
}
return (int)count;
}
// Driver Code
public static void main(String args[])
{
int N = 4;
int []arr = { 3, 2, 1, 5 };
// Print the answer
System.out.print(countMaxOrSubsets(arr));
}
}
// This code is contributed by Samim Hossain Mondal.
Python3
# Python program for above approach
# Function to find subsets having maximum XOR
def countMaxOrSubsets(nums):
# Store the size of arr[]
n = len(nums)
# To store maximum possible
# bitwise XOR subset in arr[]
maxXorVal = 0
# Find the maximum bitwise xor value
for i in range(0, (1 << n)):
xorVal = 0
for j in range(0, n):
if (i & (1 << j)):
xorVal = (xorVal ^ nums[j])
# Take maximum of each value
maxXorVal = max(maxXorVal, xorVal)
# Count the number
# of subsets having bitwise
# XOR value as maxXorVal
count = 0
for i in range(0, (1 << n)):
val = 0
for j in range(0, n):
if (i & (1 << j)):
val = (val ^ nums[j])
if (val == maxXorVal):
count += 1
return count
# Driver Code
if __name__ == "__main__":
N = 4
arr = [3, 2, 1, 5]
# Print the answer
print(countMaxOrSubsets(arr))
# This code is contributed by rakeshsahni
C#
// C# program for above approach
using System;
public class GFG
{
// Function to find subsets having maximum XOR
static int countMaxOrSubsets(int []nums)
{
// Store the size of []arr
int n = nums.Length;
// To store maximum possible
// bitwise XOR subset in []arr
int maxXorVal = 0;
// Find the maximum bitwise xor value
for (int i = 0; i < (1 << n); i++) {
long xorVal = 0;
for (int j = 0; j < n; j++) {
if ((i & (1 << j)) == 0) {
xorVal = (xorVal ^ nums[j]);
}
}
// Take maximum of each value
maxXorVal = (int)Math.Max(maxXorVal, xorVal);
}
// Count the number
// of subsets having bitwise
// XOR value as maxXorVal
long count = 0;
for (int i = 0; i < (1 << n); i++) {
long val = 0;
for (int j = 0; j < n; j++) {
if ((i & (1 << j)) == 0) {
val = (val ^ nums[j]);
}
}
if (val == maxXorVal) {
count++;
}
}
return (int)count;
}
// Driver Code
public static void Main(String []args)
{
int []arr = { 3, 2, 1, 5 };
// Print the answer
Console.Write(countMaxOrSubsets(arr));
}
}
// This code is contributed by 29AjayKumar
JavaScript
<script>
// JavaScript program for above approach
// Function to find subsets having maximum XOR
function countMaxOrSubsets(nums)
{
// Store the size of arr[]
let n = nums.length;
// To store maximum possible
// bitwise XOR subset in arr[]
let maxXorVal = 0;
// Find the maximum bitwise xor value
for(let i = 0; i < (1 << n); i++)
{
let xorVal = 0;
for(let j = 0; j < n; j++)
{
if (i & (1 << j))
{
xorVal = (xorVal ^ nums[j]);
}
}
// Take maximum of each value
maxXorVal = Math.max(maxXorVal, xorVal);
}
// Count the number
// of subsets having bitwise
// XOR value as maxXorVal
let count = 0;
for(let i = 0; i < (1 << n); i++)
{
let val = 0;
for (let j = 0; j < n; j++)
{
if (i & (1 << j))
{
val = (val ^ nums[j]);
}
}
if (val == maxXorVal)
{
count++;
}
}
return count;
}
// Driver Code
let N = 4;
let arr = [ 3, 2, 1, 5 ];
// Print the answer
document.write(countMaxOrSubsets(arr));
// This code is contributed by Potta Lokesh
</script>
Time Complexity: O(216)
Auxiliary Space: O(1)
Explore
DSA Fundamentals
Data Structures
Algorithms
Advanced
Interview Preparation
Practice Problem