Data Analysis and Visualization with Python | Set 2
Last Updated :
09 Sep, 2023
Prerequisites : NumPy in Python, Data Analysis Visualization with Python
Python is very well known for Data analysis and visualizations because of the vast libraries it provides such as Pandas, Numpy, Matplotlib, etc. Today we will learn some methods to understand our data better and to gain some useful insights from it.
1. Storing DataFrame in CSV Format :
Pandas provide to.csv('filename', index = "False|True") a function to write DataFrame into a CSV file. Here filename is the name of the CSV file that you want to create and index tells the index (if Default) of DataFrame should be overwritten or not. If we set index = False then the index is not overwritten. By Default value of the index is TRUE then the index is overwritten.
Example :
Python3
import pandas as pd
# assigning three series to s1, s2, s3
s1 = pd.Series([0, 4, 8])
s2 = pd.Series([1, 5, 9])
s3 = pd.Series([2, 6, 10])
# taking index and column values
dframe = pd.DataFrame([s1, s2, s3])
# assign column name
dframe.columns =['Geeks', 'For', 'Geeks']
# write data to csv file
dframe.to_csv('geeksforgeeks.csv', index = False)
dframe.to_csv('geeksforgeeks1.csv', index = True)
Output :
geeksforgeeks.csv:
Geeks For Geeks.1
0 0 4 8
1 1 5 9
2 2 6 10
geeksforgeeks1.csv:
Unnamed: 0 Geeks For Geeks.1
0 0 0 4 8
1 1 1 5 9
2 2 2 6 10
2. Handling Missing Data
The Data Analysis Phase also comprises the ability to handle the missing data from our dataset, and not so surprisingly Pandas live up to that expectation as well. This is where dropna and/or fillna methods come into play. While dealing with the missing data, you as a Data Analyst are either supposed to drop the column containing the NaN values (dropna method) or fill in the missing data with the mean or mode of the whole column entry (fillna method), this decision is of great significance and depends upon the data and the effect would create in our results.
Drop the missing Data: Let's create a dataframe with null values :
Python3
import pandas as pd
# Create a DataFrame
dframe = pd.DataFrame({'Geeks': [23, 24, 22],
'For': [10, 12, np.nan],
'geeks': [0, np.nan, np.nan]},
columns =['Geeks', 'For', 'geeks'])
print("Dataframe: ")
print(dframe)
# This will remove all the
# rows with NAN values
# If axis is not defined then
# it is along rows i.e. axis = 0
dframe.dropna(inplace = True)
print("Dropping Null axis = 0")
print(dframe)
Output :
DataFrame:
Geeks For geeks
0 23 10.0 0.0
1 24 12.0 NaN
2 22 NaN NaN
Dropping Null axis = 0
Geeks For geeks
0 23 10.0 0.0
Dropping columns:
Python3
# Create a DataFrame
dframe = pd.DataFrame({'Geeks': [23, 24, 22],
'For': [10, 12, np.nan],
'geeks': [0, np.nan, np.nan]},
columns =['Geeks', 'For', 'geeks'])
# if axis is equal to 1
dframe.dropna(axis = 1, inplace = True)
print(dframe)
Output:
Geeks
0 23
1 24
2 22
Fill the missing values : Now, to replace any
NaN value with mean or mode of the data,
fillna is used, which could replace all the NaN values from a particular column or even in whole
DataFrame as per the requirement.
Python3
import numpy as np
import pandas as pd
# Create a DataFrame
dframe = pd.DataFrame({'Geeks': [23, 24, 22],
'For': [10, 12, np.nan],
'geeks': [0, np.nan, np.nan]},
columns = ['Geeks', 'For', 'geeks'])
# Use fillna of complete Dataframe
# value function will be applied on every column
dframe.fillna(value = dframe.mean(), inplace = True)
print(dframe)
Output :
Geeks For geeks
0 23 10.0 0.0
1 24 12.0 0.0
2 22 11.0 0.0
Filling value of one column:
Python3
# Create a DataFrame
dframe = pd.DataFrame({'Geeks': [23, 24, 22],
'For': [10, 12, np.nan],
'geeks': [0, np.nan, np.nan]},
columns = ['Geeks', 'For', 'geeks'])
# filling value of one column
dframe['For'].fillna(value = dframe['For'].mean(),
inplace = True)
print(dframe)
Output:
Geeks For geeks
0 23 10.0 0.0
1 24 12.0 NaN
2 22 11.0 NaN
3. Groupby Method (Aggregation) :
The groupby method allows us to group together the data based on any row or column, thus we can further apply the aggregate functions to analyze our data. Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns. Consider a DataFrame generated by below code :
Python3
import pandas as pd
import numpy as np
# create DataFrame
dframe = pd.DataFrame({'Geeks': [23, 24, 22, 22, 23, 24],
'For': [10, 12, 13, 14, 15, 16],
'geeks': [122, 142, 112, 122, 114, 112]},
columns = ['Geeks', 'For', 'geeks'])
# Apply groupby and aggregate function
# max to find max value of column
print("After groupby: ")
print(dframe.groupby(['Geeks']).max())
Output :
Geeks For geeks
0 23 10 122
1 24 12 142
2 22 13 112
3 22 14 122
4 23 15 114
5 24 16 112After groupby:
For geeks
Geeks
22 14 122
23 15 122
24 16 142
Data Analysis and Visualization with Python
Explore
Introduction to Machine Learning
Python for Machine Learning
Introduction to Statistics
Feature Engineering
Model Evaluation and Tuning
Data Science Practice