Java Platform, Standard Edition
Flight Recorder APl Programmer’s Guide

Release 25
(G29149-01
September 2025

ORACLE"



Java Platform, Standard Edition Flight Recorder APl Programmer’s Guide, Release 25
G29149-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.



Contents

Preface

Audience

Documentation Accessibility
Diversity and Inclusion
Related Documents
Conventions

Part | Why Use the API?

Part Il Create Events

1

Creating and Recording Your First Event

Event Metadata

Guidelines for Naming and Labeling Events

Categories

Measuring Time

Data Types

Dynamic Events

Flight Recorder API Programmer’s Guide
G29149-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

September 3, 2025
Page i of iii



Custom Annotations

Inheritance of Annotations, Settings, and Fields

Part Il Configure Events and Flight Recorder

10

11

12

13

14

15

16

17

Enable and Disable Events

Event Threshold

The shouldCommit Method 2

Periodic Events

Printing Event Stack Trace

Filter Events with SettingDefinition

Exclude Fields from Being Persisted with the transient Keyword

Manually Register and Unregister an Event

Flight Recorder Configurations

Part IV Monitor Events with Flight Recorder Event Streaming AP

Flight Recorder API Programmer’s Guide

G29149-01

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page ii of iii



18 Create Event Stream in Process, Active

19 Create Event Stream in Process, Passive

20 Create Event Stream from External Process

Part V. Parsing a Recording File

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page iii of iii



ORACLE’

Preface

This document shows you how to use the Flight Recorder API for more comprehensive
application monitoring; you can analyze in greater detail events generated by applications, the
JVM, and the operating system. Also, you can create your own events, record your own data,
and view and parse the recordings. In addition, this document shows you how to use the Flight
Recorder event streaming API, which enables you to consume Flight Recorder data
continuously.

Audience

This document is intended for experienced Flight Recorder users who want to monitor their
applications in greater detail.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documents

e The jfr Command in the Java Development Kit Tool Specifications

e Thejdk.jfr module

Conventions

The following text conventions are used in this document:

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page i of ii


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://docs.oracle.com/en/java/javase/14/docs/api/jdk.jfr/module-summary.html

ORACLE’

Preface
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLs, code in

examples, text that appears on the screen, or text that you enter.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page ii of ii



Why Use the API?

Use the Flight Recorder API for more comprehensive application monitoring; you can analyze
in greater detail events generated by applications, the JVM, and the operating system. In
addition, you can create your own events, record your own data, and view and parse the
recordings.

For example, you might create events and recordings for the following scenarios:

* Toidentify slow HTTP GET requests: A client application sends a request to a web server
and it takes a long time for the request to be processed. To troubleshoot this problem, you
can create an event that triggers if the request takes more than five seconds to process.
You can also correlate these requests with JVM events, such as garbage collection or
thread contention, which might impact web server performance.

e To track slow-running SQL queries: Some SQL queries take a long time to execute in a
database server. To identify the problem, you can create an event to log all the SQL
gueries, and then analyze the recordings to track the slowest-running queries.

Flight Recorder API or Java Logging API?

The Java Logging API (see the package j ava. uti | . | oggi ng) captures information such as
security failures, configuration errors, performance bottlenecks, and bugs in the application or
platform. However, compared with the Java Logging API, the Flight Recorder API provides you
with more information in the recording it generates (and in the events it records), more
information regarding the context in which an event occurs, and more control over the timing of
events.

Flight Recorder API Programmer’s Guide

G29149-01

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1


https://docs.oracle.com/en/java/javase/14/docs/api/java.logging/java/util/logging/package-summary.html

Create Events

This section shows you how to create and record events. It contains the following topics:

e Creating and Recording Your First Event

+ Event Metadata

*  Guidelines for Naming and Labeling Events
+ Categories

¢ Measuring Time

 Data Types
*  Dynamic Events

e Custom Annotations

* |nheritance of Annotations, Settings, and Fields

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Creating and Recording Your First Event

The sample Hel | oWr | dSanpl e. j ava creates an event named com or acl e. Hel | o.

inport jdk.jfr.Event;
inport jdk.jfr.Label;
inport jdk.jfr.Name;

public class Hell oWrldSanple {

@anme("com oracl e. Hel | 0")

@abel ("Hello World!")

static class Hello extends Event {
@abel ("Message")
String nessage;

}

public static void main(String... args) {
Hel 1 o event = new Hello();
event . begin();
event. message = "Hello world!'";
event.comit();

Run Hel | oWr | dSanpl e with the following command:

java - XX: StartFlight Recording: fil ename=hw.jfr Hell oWrl dSanpl e.java
It runs Hel | oWor | dSanpl e and creates a recording file named hw. j fr.

To view the contents of the recording file, run this command:

jfr oprint hwjfr

It prints all events recorded by Flight Recorder.

If you only want to view the Hel | o event that you created, then run this command:

jfr print --events Hello hw.jfr

It prints output similar to the following:

comoracle.Hello {
startTime = 16: 44: 14. 841
duration = 0.0170 ns
message = "Hello world!"
event Thread = "main" (javaThreadld = 1)

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 2



ORACLE

Chapter 1
stackTrace = |
Hel | oWor | dSanpl e. mai n(String[]) line: 18
jdk.internal.reflect.NativeMethodAccessorlnpl.invokeO(Mthod, bject
oject[])
jdk.internal.reflect.NativeMethodAccessorlnpl.invoke(Object, Object[])
line: 64

jdk.internal.reflect. Del egati ngMet hodAccessor | npl . i nvoke( bj ect,
oject[]) line: 43
java.lang.reflect. Method.invoke(Chject, Coject[]) line: 564

Flight Recorder API Programmer’s Guide

G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 2



Event Metadata

The example Set Met adat aSanpl e. j ava defines an event named com or acl e. Hel | 0 and sets
the annotations @\arne, @escri pti on, @Q.abel , and @at egor y. (Note that this sample is
in the package frexanpl es.)

package frexanpl es;

inport jdk.jfr.Category;
inport jdk.jfr.Description;
inport jdk.jfr.Event;
inport jdk.jfr.Label;

i nport jdk.jfr.Narme;

public class SetMetadataSanple {

@anme("com oracl e. Hel | 0")
@abel ("Set Metadata Exanple")
@escription("Denonstrates how to set the annotations
+ "@\ame, @escription, @abel, and @ategory")
@at egory({ "Demonstration", "Tutorial" })
static class Hello extends Event {
@abel ("Message")
String nessage;

}

public static void main(String... args) {
Hel | o event = new Hel l o();
event . begin();
event. message = "Hello Event!";
event.comit();

Ensure that the example is in a directory named f r exanpl es, then run Set Met adat aSanpl e
from this directory with the following commands:

java - XX: Start Fl i ght Recordi ng: fil ename=sm jfr Set Mt adataSanple.]java
jfr print --events Hello smjfr

The last command prints output similar to the following:

comoracle.Hello {
startTime = 23:43: 48. 444
duration = 0.0177 ns
nmessage = "Hello Event!"

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 2



ORACLE
Chapter 2

You can also use the j fr print command to filter events that belong to one or more
categories:

jfr print --categories Denonstration smjfr

The @ane annotation overrides the default name for an event type. For example, the default
name for the event created in this example would have been

frexanpl es. Set Met adat aSanpl e$Hel | o if the @Nare annotation hadn't been set. See
Guidelines for Naming Events.

The @Descri pti on and @abel annotations enable to you add additional information about
an event type. Note that you shouldn't use @Q.abel as an identifier; use the @lanme annotation
instead. See Guidelines for Labeling Events

The @Cat egor y annotation enables you to associate one or more categories with an event
type. To specify one category, use a string. To specify more than one category, use a comma-
separated list of strings surrounded by braces ({}). See Cateqgories.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 2



Guidelines for Naming and Labeling Events

You should name and label all of your events by setting the annotations @Nane and @Q.abel .

Guidelines for Naming Events

Use the following format for naming your events, where www. exanpl e. comis the domain of your
organization and Nane is the name of your event class:

com exanpl e. Nane

When naming your event class, omit the word "Event."

By default, an event gets its name from its fully qualified class name. For example, in the
example Set Met adat aSanpl e. j ava (see Event Metadata), the default name of the event Hel | o
is frexanpl es. Set Met adat aSanpl e$Hel | o.

This works well for experimentation, but avoid omitting the @Nane annotation for production
code. You might have to refactor your source code and move the event class to a different
package. If you haven't specified the event's name with the @\are annotation, then refactoring
an event class can break code or settings files that configure the event. It can also break code
that parses recording files that use the default name to identify an event.

The fully qualified class name may also contain redundant or unnecessary strings such asj fr,
i nternal, events, or Event s that you should omit.

An event name should be short but not so short that it clashes with other organizations or
products. The name should be easy to understand for users who want to configure the event.
This is especially true if the event is part of a framework or library that is meant to be used by
others. It's usually sufficient to put all the events for a library or product in the same
namespace. For example, all the events for OpenJDK are in the j dk namespace. There are no
sub-namespaces for hot spot , gc, or conpi | er as this would just complicate things. However,
it's possible to divide events into categories with the @Cat egor y annotation, which you can
freely change without disruption.

Guidelines for Labeling Events

For labels, use headline-style capitalization: Capitalize the first and last words and all nouns,
pronouns, adjectives, verbs and adverbs. Do not include ending punctuation. As with event
names, omit the word "Event." Note that you shouldn't use @.abel as an identifier; use the
@Nane annotation instead.

Use labels to display events in user interfaces such as a custom visualization tool. For
example, JDK Mission Control's Event Browser uses the label to display events in its Event
Types Tree.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Categories

With the @Cat egor y annotation, you can assign any number of categories to an event.
Categories enable you to identify similar events that should be displayed together, for example,
in a graph or a tree. Although you can assign any category to an event (a category is just a
string), it's best to first determine your categories.

If there's a chance that two or more events can happen at the same time and in the same
thread, even if their start and end times might be different, then they should belong to different
categories to prevent overlap when they're represented in a graphical user interface.

For example, suppose that you want to monitor image uploads to a web server. You create an
event named File Upload that begins when a user uploads a file and ends when an upload
completes. For advanced diagnostics about image uploads, you create more detailed events
named Image Read, Image Resize, and Image Write. During these detailed events, other low-
level events occur, for example, Socket Read during Image Read and File Write during Image
Write. In this example, the event File Upload would overlap the events Image Read, Image
Resize, and Image Write, which means that the File Upload event might hide the detailed
events in some event visualizers. The same issue might happen for Image Read and Socket
Read, and Image Write and File Write.

To prevent event overlap, make sure that events that might overlap belong to different
categories. The following diagram illustrates one categorization scheme that prevents event
overlaps and how an event visualizer could display them:

Figure 4-1 Categorizing Concurrent Events to Prevent Overlaps

Categories Events

Upload File Upload

Image Upload Image Read Image Write

Java Application Socket Read Socket Read File Write

6 1 [ 1

vl
-

1 2 3 4 6
Time (ms)

File Upload belongs to the category Upload. Image Read, Image Resize, and Image Write
belong to the category Image Upload. Socket Read and File Write belong to the category Java
Application.

The example Cat egor i esSanpl e. j ava implements this categorization scheme and simulates
the creation of events as illustrated in the figure:

import jdk.jfr. Category;

i mport jdk.jfr.DataAmount;
import jdk.jfr.Event;
import jdk.jfr.Label;

i mport jdk.jfr. Name;

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 4



ORACLE
Chapter 4

inport jdk.jfr.Percentage;
public class CategoriesSanple {

public static final String PROGRAMMVERS GU DE_SAMPLES =
"Progranmer's Guide Sanpl es";

public static final String UPLOAD = "Upl oad";

public static final String | MAGE_UPLOAD = "I mage Upl oad";

public static final String JAVA APPLI CATION = "Java Application”;

@ame("com oracl e. Fi | eUpl oad")

@abel ("File Upl oad")

@Cat egor y( { PROGRAMMVERS _GUI DE_SAMPLES, UPLQOAD})
private static class FileUpl oad extends Event { }

@anme("com oracl e. | mageRead")
@abel ("1 mage Read")
@at egor y( { PROGRAMVERS_GUI DE_SAMPLES, | MAGE_UPLQAD})
private static class |ImageRead extends Event {
@at aAmount ( Dat aAmount . BYTES)
 ong byt esUpl oaded,;
}

@ame("com or acl e. | mageResi ze")
@abel ("1 mage Resize")
@Cat egor y({ PROGRAMVERS GUI DE_SAMPLES, | MAGE_UPLQAD})
private static class |ImageResize extends Event {
@er cent age
doubl e scal e;

}

@ame("com oracl e. | mageWite")
@abel ("I mage Wite")
@at egor y( { PROGRAMVERS_GUI DE_SAMPLES, | MAGE_UPLQAD})
private static class ImageWite extends Event {
@at aAmount ( Dat aAmount . BYTES)
l ong bytesWitten;

}

@ame("com or acl e. Socket Read")
@abel (" Socket Read")
@at egor y( { PROGRAMVERS_GUI DE_SAMPLES, JAVA_APPLI CATI ON})
private static class Socket Read extends Event {
@at aAmount ( Dat aAmount . BYTES)
| ong byt esRead;

}

@ame("comoracle. FileWite")
@abel ("File Wite")
@at egor y( { PROGRAMVERS_GUI DE_SAMPLES, JAVA_APPLI CATI ON})
private static class FileWite extends Event {
@at aAmount ( Dat aAmount . BYTES)
l ong bytesWitten;

}

public static void main(String... args) {
Flight Recorder API Programmer’s Guide

G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 4



ORACLE’

FileUpload fu = new Fil eUpl oad();
fu. begin();

| mageRead ir = new | mageRead();
ir.begin();
i r.bytesUpl oaded = 2048;

Socket Read srl = new Socket Read();
srl. begin();

srl. bytesRead = 1024,
srl.comit();

Socket Read sr2 = new Socket Read();
sr2. begin();

sr2. bytesRead = 1024,
sr2.comit();

ir.comit();

| mageResi ze irs = new | nageResi ze();
irs.begin();

irs.scale = 0.5;

irs.comit();

ImageWite iw = new | nageWite();
i w. begin();
iw bytesWitten = 1024;

FileWite fw = new FileWite();
fw. begin();

fw bytesWitten = 1024,

fw comit();

iw.commit();
fu.comit();

Run Cat egor i esSanmpl e with the following command:

java - XX: StartFlight Recording: fil ename=cat egori essanmple.jfr
Cat egori esSanpl e. j ava

Flight Recorder API Programmer’s Guide

G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

Chapter 4

Then, open cat egori essanpl e. j fr in JDK Mission Control. From the Event Types Tree in
the Event Browser, find the events created by this sample in the category Programmer's
Guide Samples:

September 3, 2025
Page 3 of 4



ORACLE’

Chapter 4

Figure 4-2 JDK Mission Control Browser Displaying Events from CategoriesSample

[ DK Mission Control
file Edit Navigate Window Help
= |+ categoriessamplejfr

= » Event Browser

e
| <No Selection> ~ Aspect: <No Selection>

Event Types Tree

Search the tree
& Flight Recorder 321
& Java Application 82
& Java Development

& Java Virtual Machine 2
& Operating System 29
~ & Programmer's Guide Samples 7

~ & Image Upload 3
W Image Read 1
B Image Resize 1
W image Wiite

~ @ Java Application 3
[ File Wite 1
B Socket Read 2

~ & Upload 1
M File Upload 1

o=
~ | [Jshow concurrent: | | Contained - Same thread:
Event Type Duration Start Time End Time Event Thread
File Upload 154353 ms 2/20/20, 240:55 PM_2/20/20, 2:40:55 PM_main
Image Read  19.946 ms 2/20/20, 2:40:55 PM  2/20/20, 2:40:55 PM  main
Socket Read 8.890 s 2/20/20, 240:55 PM  2/20/20, 2:40:55 PM  main
Socket Read 1.078 s 2/20/20, 240:55 PM 2/20/20, 2:40:55 PM  main
Image Resize  21.713 s 2/20/20, 2:40:55 PM  2/20/20, 2:40:55 PM  main
Image Write  17.343 ms 2/20/20, 240:55 PM 2/20/20, 2:40:55 PM _ main
File Write 8379 s 2/20/20, 240:55 PM  2/20/20, 2:40:55 PM  main

JDK Mission Control categorizes events based on their @at egory attribute and lists them by
their @Q.abel attribute.

Flight Recorder API Programmer’s Guide
G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 4 of 4



Measuring Time

The example Measur eTi neSanpl e. j ava shows you how to measure the time of an operation by
calling the Event . begi n and Event . comm t methods.

inport jdk.jfr.Event;
inport jdk.jfr.Label;
i nport jdk.jfr.Name;
public class MeasureTi meSanpl e {

@\ame("com or acl e. Measur eDur ati on")
@abel ("Measure Duration")
static class MeasureMyDuration extends Event { }

public static void main(String... args) throws Exception {
Measur eMyDur ati on event = new MeasureMyDuration();
event . begin();
Thread. sl eep(42);
event.comit();

Note that the conmi t method ends the timing of an event without the need of an explicit call to
the end method.

Run Measur eTi meSanpl e with the following commands:

java -XX: StartFlightRecording: filename=nt.jfr MeasureTi meSanple.java
jfr print --events MeasureDuration nt.jfr

The last command prints output similar to the following:

com oracl e. MeasureDuration {
startTime = 12:26: 43. 169
duration = 45.3 ns

Flight Recorder API Programmer’s Guide

G29149-01

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Data Types

The example Per si st Fi el dTypesSanpl e. j ava shows which field types you can persist in an
event, which are the following:

* java.lang. String, which may be null
* java.l ang. Thr ead, which may be null

e« java.lang. d ass, which may be null

e byte

* short
e int

« long

« float
 double
e char

* bool ean

@® Note

Events don't support arrays.

The following is the Per si st Fi el dTypesSanpl e. j ava example:

import jdk.jfr.Event;
import jdk.jfr.Label;
i mport jdk.jfr. Name;

public class PersistFiel dTypesSanpl e {

@\Name("com oracl e. Fi el dTypes")

@.abel ("Al I owed Field Types")

static class FieldTypes extends Event {
@.abel ("C ass Val ue")
QO ass<?> cl assVal ue;

@.abel ("Thread Val ue")
Thread threadValue; // thread nust be started

@.abel ("String Val ue")
String stringVal ue;

@.abel ("Byte Val ue")
byte byteVal ue;

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 3



ORACLE
Chapter 6

@abel ("Short Val ue")
short shortVal ue

@abel ("Int Val ue")
int intValue;

@abel ("Long Val ue")
l ong | ongVal ue

@abel ("Fl oat Val ue")
float floatValue

@abel ("Doubl e Val ue")
doubl e doubl eVal ue

@abel ("Character Val ue")
char character Val ue;

@abel ("Bool ean Val ue")
bool ean bool eanVal ue;

public static void main(String... args) {
Fi el dTypes event = new Fiel dTypes();
event. cl assVal ue = Math. cl ass
event.threadVal ue = Thread. current Thread();
event.stringValue = "Hello";
event. byt eVal ue = 42
event.shortVal ue = 4711
event.intValue = Integer. MAX_VALUE;
event. | ongVal ue = Long. MAX_VALUE
event . doubl eVal ue = Mat h. Pl
event. fl oat Val ue = Fl oat. NaN
event.characterValue = '!";
event . bool eanVal ue = true
event.comit();

Run Per si st Fi el dTypesSanpl e with the following commands:

java -XX: StartFlightRecording: filename=pft.jfr PersistFieldTypesSanple.java
jfr print --events FieldTypes pft.jfr

The last command prints output similar to the following:

com oracl e. Fi el dTypes {
startTime = 12:33:12.434
classValue = java.lang. Math (cl assLoader = bootstrap)
threadValue = "main" (javaThreadld = 1)
stringVal ue = "Hel |l 0"
byt eVal ue = 42
shortValue = 4711
intValue = 2147483647
| ongVal ue = 9223372036854775807

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 3



ORACLE’

floatValue = N A

doubl eVal ue = 3.141592653589793
characterVal ue = !

bool eanVal ue = true

Flight Recorder API Programmer’s Guide

G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

Chapter 6

September 3, 2025
Page 3 of 3



Dynamic Events

Dynamic events enable you to define events at run time, including their annotations and fields.

@® Note

Only use dynamic events if you won't know the layout of an event until you run your
application.

The example Dynani cSanpl e. j ava creates a dynamic event named
com or acl e. Randon®st ri ng, which includes a field whose name is a random string:

inport java.util.ArraylList;
inport java.util.Collections;
inport java.util.List;

i nport jdk.jfr.AnnotationEl enent;
inport jdk.jfr.Category;

import jdk.jfr.Description;
inport jdk.jfr.Event;

inport jdk.jfr.EventFactory;

i nport jdk.jfr.Label;

i nport jdk.jfr.Name;

i nport jdk.jfr.ValueDescriptor;

public class Dynam cSanple {
private static String randonString(int n) {

var ALPHA NUMERI C_STRI NG = " ABCDEFGH JKLMNOPQRSTUWWKYZ" ;
var builder = new StringBuilder();
while (n-- '=0) {
int character = (int) (Mth.random()
* ALPHA NUMERI C_STRING | ength());
bui | der. append( ALPHA_NUMERI C_STRI NG char At (character));

}
return builder.toString();

}

public static void main(String[] args) {

String[] category = { "Denonstration", "Tutorial" };
var event Annotations = new ArrayLi st <Annot ati onEl enent >();
event Annot ati ons
.add(new Annot at i onEl ement (
Nane. cl ass, "com oracl e. Randonstring"));
event Annot at i ons. add( new Annot at i onEl ement ( Label . cl ass,
"Field Named with Random String"));
event Annot at i ons. add( new Annot at i onEl ement ( Descri pti on. cl ass,

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 2



ORACLE’

Chapter 7

"Denonstrates how to create a dynanic event"));
event Annot at i ons. add( new Annot at i onEl ement (
Cat egory. cl ass, category));

var fields = new Arrayli st <Val ueDescri ptor>();
var nmessageAnnotations = Col | ections
. singl etonLi st (new Annot ati onEl enent (Label . cl ass, "Message"));
var randonfi el dNanme = Dynami cSanpl e. randonStri ng(8);
fiel ds.add(new Val ueDescriptor(String.class, randonfi el dNane,
messageAnnot ations));
var nunber Annot ations = Col | ections
. singl etonLi st(new Annot ati onEl enent (Label . cl ass, "Number"));
fiel ds.add(new Val ueDescri ptor (
int.class, "nunber", nunberAnnotations));

var f = EventFactory. create(event Annotations, fields);

Event event = f.newEvent();
event.set (0, "hello, world!");
event.set (1, 100);
event.comit();

Run Dynani cSanpl e with the following commands:

java - XX: StartFlightRecording: filename=d.jfr Dynami cSanple.java
jfr print --events RandonString d.jfr

The last command prints output similar to the following:

com oracl e. RandonBtring {
startTinme = 12:56: 32. 782
ZZEIUMIG = "hello, world!™"
nunber = 100

To create a dynamic event, call the static method
Event Fact ory. cr eat e<Li st <Annot ati onEl enent >, Li st <Val ueDescri pt or>):

var f = EventFactory. create(event Annotations, fields);

The first argument is a list of your event's annotations, which may include built-in annotations
such as @\ane and @escri pti on.

The second argument is a list of your event's fields. Define them with the Val ueDescr i pt or
class.

Flight Recorder API Programmer’s Guide

G29149-01

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 2



Custom Annotations

Creating custom annotations for events is the same as creating Java annotations. The
example Cust omAnnot at i onSanpl e. j ava demonstrates this.

inport java.lang.annotation. El enent Type;

i nport java.lang.annotation. Retention;

i nport java.lang.annotation. RetentionPolicy;
inport java.lang.annotation. Target;

inport jdk.jfr.
inport jdk.jfr.
inport jdk.jfr.
inport jdk.jfr.
inport jdk.jfr.
inport jdk.jfr.

Descri ption;

Event ;

Label ;

Met adat aDef i ni tion;
Nane;

Rel ati onal ;

public class CustomAnnotationSanple {

@kt adat aDefinition

@ane("com

oracl e. Severity")

@abel ("Severity")

@escription("Val ue between 0 and 100 that indicates " +
"severity. 100 is nost severe.")

@ret enti on( Ret enti onPol i cy. RUNTI ME)

@arget ({ El ement Type. TYPE })

public @nterface Severity {
int value() default 50;

}

@kt adat aDefinition

@ane("com

oracl e. Transactionl d")

@abel ("Transaction I1D")

@=el ati onal

@ret enti on( Ret enti onPol i cy. RUNTI ME)
@arget ({ El ement Type. FIELD })
public @nterface Transactionld { }

@anme("com oracl e. Transacti onBl ocked")
@everity(80)
@abel (" Transaction Bl ocked")
static class TransactionBl ocked extends Event {
@r ansactionld
@abel (" Transaction")
 ong transaction;

@ransactionld
@abel ("Transaction Bl ocker")
| ong transactionBl ocker;

Flight Recorder API Programmer’s Guide
G29149-01

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 3



ORACLE
Chapter 8

public static void main(String... args) {
Transacti onBl ocked event = new TransactionBl ocked();
event . begin();
event.transaction = 1;
event.transacti onBl ocker = 2;
event.comit();

Run Cust omAnnot at i onSanpl e with the following command:

java -XX: StartFlightRecording: filename=ca.jfr CustomAnnotationSanple.java

To view annotations, categories, field layouts, and other information about all the events in
cust omannot at i onsanpl e. j f r, run the following command:

jfr metadata ca.jfr

The output of the previous command includes the following:

@ame("com oracl e. Severity")
@abel ("Severity")
@escription("Value between 0 and 100 that indicates severity. 100 i s nost
severe.")
class Severity extends java.lang.annotation. Annotation {
int val ue;

}

@anme("com oracl e. Transactionl d")
@abel ("Transaction |1 D")

@Rel at i onal
class Transactionld extends java.lang.annotation. Annotation {
}

@ame("com oracl e. Transacti onBl ocked")
@everity(80)
@abel (" Transaction Bl ocked")
class TransactionBl ocked extends jdk.jfr.Event {
@abel ("Start Tine")
@i mestanp(" Tl CKS")
long startTine;

@abel ("Duration")
@i mespan(" Tl CKS")
| ong duration;

@abel ("Event Thread")
@escription("Thread in which event was conmitted in")
Thread event Thr ead;

@abel ("Stack Trace")
@escription("Stack Trace starting fromthe method the event was conmitted
in"

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 3



ORACLE
Chapter 8

StackTrace stackTrace;

@r ansactionld
@abel ("Transaction")
I ong transaction;

@r ansactionld
@abel ("Transaction Bl ocker")
I ong transactionBl ocker;

To access values of custom annotations, use the Event Type. get Annot at i on method,
which takes one argument, the C ass object that corresponds to the annotation type. For
example, the following code prints the events whose severity is greater than 50:

for (var e : RecordingFile.readAl | Events(file)) {
Event Type t = e. get Event Type();
Severity s = t.getAnnotation(Severity.class);
if (s !=null & s.getValue() > 50) {
Systemout. println(e);
}

See Declaring an Annotation Type in The Java Tutorials.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 3 of 3


https://docs.oracle.com/javase/tutorial/java/annotations/declaring.html

Inheritance of Annotations, Settings, and

Fields

When a class extends an event, it inherits the event's annotations, settings, and fields.
However, a class doesn't inherit private fields or annotations that lack the
@ ava. | ang. | nheri t ed meta-annotation.

The example | nheri t anceSanpl e. j ava demonstrates this. It defines three events: Fi | eActi on,
Fi | eUpl oad, and | mageUpl oad.

import jdk.jfr. Category;
import jdk.jfr.Description;
import jdk.jfr.Event;
import jdk.jfr.Label;

i mport jdk.jfr. Name;

import jdk.jfr.StackTrace;

public class InheritanceSanple {

@cat egory("Fil es")

@5t ackTrace(fal se)

abstract static class FileAction extends Event {
@.abel ("In Progress")
bool ean i nProgress;

}

@\Name("com oracl e. Fi | eUpl oad")
@escription("Upl oaded file that might be a text file")
@.abel ("Fi I e Upl oad")
static class FileUpl oad extends FileAction {
@.abel ("Text file")
private bool ean isText;

}

@\are( " com oracl e. | mageUpl oad")
@.abel ("1 mage Upl cad")
static class | mageUpl oad extends FileUpl oad {

}

public static void main(String... args) {
FileUpl oad fu = new Fil eUpl oad();
fu.inProgress = true;
fu.isText = fal se;
fu.commit();

I mageUpl oad i u = new | mageUpl oad();
iu.inProgress = fal se;
iu.comit();

Flight Recorder API Programmer’s Guide

G29149-01

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 2



ORACLE
Chapter 9

Run I nheri t anceSanpl e with the following commands:

java - XX: StartFlightRecording: filename=i.jfr InheritanceSanple.java
jfr print --events FileUpl oad, | rageUpl oad i.jfr

The last command prints output similar to the following:

comoracl e. Fi |l eUpl oad {
startTime = 15:22:28.794
isText = fal se
i nProgress = true

}...

com oracl e. | mageUpl oad {
startTime = 15:22: 28. 822
inProgress = fal se

Abstract event classes, such as Fi | eActi on are not registered, so their metadata is never
available for inspection.

Classes don't inherit annotations that lack the @ ava. | ang. | nheri t ed annotation, such as
@ane and @escri ption.

Because the field i sText is private, | mageUpl oad doesn't inherit it.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 2



Configure Events and Flight Recorder

This section describes how to configure events and Flight Recorder to optimize their
performance and control their behavior.

Each event has the following predefined settings:

* (@nabl ed: Specifies whether the event is recorded. The default value is t r ue. See Enable
and Disable Events.

e @hreshol d: Specifies the duration below which an event is not recorded. The default is 0
(no limit). See Event Threshold.

° (@reri od: Specifies the interval at which the event is emitted, if it is periodic. The default
value is ever yChunk, which means that the periodic event will be emitted at least once in
the recording. See Periodic Events

e (@5t ackTr ace: Specifies whether the stack trace from the Event : : comm t () method is
recorded. The default value is t rue. See Printing Event Stack Trace.

Flight Recorder provides various options to filter events; see Filter Events with
SettingDefinition.

It's recommended that you specify a preconfigured configuration, which contains a collection of
settings that control how much information Flight Recorder generates; see Flight Recorder
Configurations. If you don't specify a preconfigured configuration, then Flight Recorder records
information about all events; it monitors the running system at an extremely high level of detail
and produces enormous amounts of data.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Enable and Disable Events

You can enable and disable events with the @nabl ed annotation. The example
Enabl ement Sanpl e. j ava demonstrates this.

i nport jdk.jfr.Enabled;
inport jdk.jfr.Event;
inport jdk.jfr.Label;

i nport jdk.jfr.Name;

public cl ass Enabl ement Sanpl e {

@\ane("com or acl e. Wont SeeMe")

@abel ("Wn't See Me")

@nabl ed(fal se)

static class WntSeeMe extends Event {

}

@ane("com oracl e. W1 | SeeMe")

@abel ("WII See Me")

@nabl ed(true)

static class WII SeeMe extends Event {

}

public static void main(String... args) throws Exception {
Wont SeeMe event1l = new Wont SeeMe();
event 1. commit();

W1l SeeMe event2 = new WI I SeeMe();
event2. commit();

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Event Threshold

Setting a threshold on an event means that Flight Recorder won't record it if its duration is less
than the threshold. This enables you to limit the number of events that Flight Recorder records.
By default, events have a threshold of 0 ms. It's recommended to set a threshold if an
operation occurs frequently and outliers are of greatest concern.

The Set Thr eshol dSanpl e. j ava example creates ten events with a random duration. Flight
Recorder records only those events whose duration is greater than 50 ms.

inport java.util.Random
inport jdk.jfr.Event;
inport jdk.jfr.Label;
i nport jdk.jfr.Narme;
inport jdk.jfr.Threshol d;

public class SetThreshol dSampl e {

@anme("com or acl e. RandonS| eep")
@.abel (" Random S| eep")
@hreshol d("50 ns")
static class RandonSl eep extends Event {
@abel ("Event nunber")
int event Number ;
@abel ("Random Val ue")
int randonval ue;

}

public static void nmain(String... args) throws Exception {

Random randNum = new Randon() ;

for (int i =0; i <10; i++) {
Randontl eep event = new RandonSl eep();
event. begin();
event . event Nunber = i;
event.randonVval ue = Math. abs(randNum nextlInt() % 100);
Systemout.printin("Event #" + i + ": " + event.randonVal ue);
Thr ead. sl eep(event. randonVal ue);
event.commit();

Note that the conmi t method ends the timing of an event without the need of an explicit call to
the end method.

Run Set Thr eshol dSanpl e with the following commands:

java - XX StartFlight Recording:fil ename=st.jfr SetThreshol dSanpl e. java
jfr print --events Randontleep st.jfr

Flight Recorder API Programmer’s Guide

G29149-01

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 4



ORACLE’

The first command prints output similar to the following:

Event #0: 97
Event #1: 15
Event #2: 25
Event #3: 73
Event #4: 38
Event #5: 11
Event #6: 5
Event #7: 28
Event #8:. 42
Event #9: 37

The last command prints output similar to the following:

com or acl e. Randonf| eep {
startTime = 23:17:42. 050
duration = 103.813 ns
event Nunber 0
randonval ue = 97

}...

com or acl e. Randonf| eep {
startTime = 23:17:42. 197
duration = 77.726 ns
event Nunber = 3
7

randonVal ue = 73

The shouldCommit Method

You can reduce the overhead of expensive operations with the Event . shoul dConmi t
method, which only commits an event if its duration is within a specified threshold.

Chapter 11
The shouldCommit Method

The example Shoul dCommi t . j ava creates ten events with a random duration. Flight Recorder

commits only those events whose duration is greater than 20 ms.

inport java.util.Random

inport jdk.jfr.Event;
inport jdk.jfr.Label;
i nport jdk.jfr.Name;
import jdk.jfr.Threshol d;

public class Shoul dConmit Sanpl e {

@\ane("com or acl e. Randontl eep")

@abel ("Random Sl eep")

@hreshol d("20 ms")

static class Randontl eep extends Event {
@abel ("I D")
int id;

Flight Recorder API Programmer’s Guide

G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 2 of 4



ORACLE Chapter 11
The shouldCommit Method

@abel ("Val ue Kind")
String val uekKi nd;

}

public static void main(String... args) throws Exception {
Random randNum = new Random();
for (int i =0; i <10; i++) {
Randont| eep event = new Randonfl eep();
event . begin();

event.id = i;
int value = randNum next | nt (40);
Systemout.printIn("ID" +i +": " + value);

Thread. sl eep(val ue);
event.end();
if (event.shouldCommit()) {
/1 Format message outside tining of event
if (value < 10) {
event.valueKind = "It was a | ow value of " +
value + "!'";
} elseif (value < 20) {
event.valueKind = "It was a nornal value of " +
value + "1";
} else {
event.valueKind = "It was a high value of " +
value + "1";
}

event.comit();

Run this example with the following commands:

java - XX: Start Fl i ght Recordi ng: fil ename=shoul dcommi t.jfr Shoul dCommrit.java
jfr print --events RandonSl eep shoul dcommit.jfr

The first command prints output similar to the following:

IDO0: 8
ID 1. 2
ID2: 34
ID3: 0
ID4: 11
ID5: 2
ID6: 14
ID 7. 28
ID 8. 27
ID9: 11

The last command prints output similar to the following:

com or acl e. Randonf| eep {
startTime = 23:27:10. 642

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 3 of 4



ORACLE Chapter 11
The shouldCommit Method

duration = 36.711 ns
id=2
valueKind = "It was a high value of 34!"

} o

com or acl e. Randonf| eep {
startTime = 23:27:10.711
duration = 29.390 ns
id=7
valueKind = "It was a high value of 28!"

}...

com or acl e. Randonf| eep {
startTime = 23:27:10.741
duration = 28.475 ns
id=38
valueKind = "It was a high value of 27!"

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 4 of 4



Periodic Events

i nport java.lang. managenent. Managenent Fact ory;
i nport java.lang. managenent. Thr eadMXBean;

inport jdk.jfr.Event;

inport jdk.jfr.FlightRecorder;
inport jdk.jfr.Label;

inport jdk.jfr.Name;

inport jdk.jfr.Period;

public class PeriodicSanple {

private static ThreadMXBean tBean =
Managenent Fact ory. get Thr eadMXBean() ;

@anme("com oracl e. StartedThreadCount")

@abel ("Total nunber of started threads")

@eriod("1 s")

static class StartedThreadCount extends Event {
long total StartedThreadCount;

}

public static void main(String[] args) throws InterruptedException {

Runnabl e hook = () -> {
StartedThreadCount event = new StartedThreadCount();
event.total StartedThreadCount =
t Bean. get Tot al St art edThr eadCount () ;
event.comit();

b
Fl i ght Recor der. addPeri odi cEvent (St art edThreadCount . cl ass, hook);

for (int i =0; i <4; i++) {
Thread. sl eep(1500);
Thread t = new Thread();
t.start();

}

Fl i ght Recor der . renmovePeri odi cEvent ( hook) ;

Flight Recorder API Programmer’s Guide

G29149-01

The example Peri odi cSanpl e. j ava creates a periodic event named St art edThr eadCount that
records the total number of threads that have been created and started every second.

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates.

Page 1 of 3



ORACLE
Chapter 12

Run Peri odi cSanpl e with the following commands:

java - XX: StartFlight Recording: fil ename=periodic.jfr PeriodicSanple.java
jfr print --events StartedThreadCount periodic.jfr

The last command prints output similar to the following:

com oracl e. StartedThreadCount {
startTinme = 00:59:40. 769
total StartedThreadCount = 12

}

com oracl e. StartedThreadCount {
startTinme = 00:59:41. 816
total StartedThreadCount = 12

}

com oracl e. StartedThreadCount {
startTinme = 00:59: 42. 866
total StartedThreadCount = 13

}

com oracl e. StartedThreadCount {
startTine = 00:59:43.918
total StartedThreadCount = 14

}

com oracl e. StartedThreadCount {
startTinme = 00:59: 44, 962
total StartedThreadCount = 14

To create a periodic event, follow these two steps:

1. Specify how often the event should be emitted with the @er i od annotation:

@\ame("com oracl e. St art edThr eadCount ")

@abel ("Total nunber of started threads")

@eriod("1 s")

static class StartedThreadCount extends Event {
I ong total StartedThreadCount;

}

Valid units for a period are: ns, us, ns, s, m h, and d.
You can also specify one of the following:
e everyChunk: A periodic event will be emitted at least once in the recording.

e begi nChunk: A periodic event will be emitted in the beginning of a recording.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 3



ORACLE
Chapter 12

e endChunk: A periodic event will be emitted in the end of a recording.

2. Add the periodic event with the Fl i ght Recor der. addPeri odi cEvent (O ass<?
extends Event >, Runnabl e) static method. The first argument is the name of the
periodic event's class. The second argument is a callback method that's represented by a
lambda expression that creates and commits the event:

Runnabl e hook = () -> {
Start edThreadCount event = new StartedThreadCount();
event.total StartedThreadCount =
t Bean. get Tot al St art edThr eadCount () ;
event.comit();

b
Fl i ght Recor der. addPeri odi cEvent (St art edThreadCount . cl ass, hook) ;

The method Fl i ght Recor der . r enpvePer i odi cEvent ( Runnabl €) removes the lambda
expression associated with a periodic event. In most cases, you won't need this method; if you
want to disable a periodic event, you can call Recor di ng. di sabl e(C ass<? ext ends
Event >) . However, one reason to call r emovePer i odi cEvent is to avoid memory leaks.
For example, suppose you have an application server where data is loaded and unloaded. If
the callback method references data that the server loads and unloads, then it may prevent
that data from being garbage collected. You can avoid this by removing the callback method
when the data is unloaded.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 3 of 3



Printing Event Stack Trace

The example St ackTr aceSanpl e. j ava prints information about an event's stack trace.

St ackTraceSanpl e uses the Event Streaming API (see Monitor Events with Flight Recorder
Event Streaming API) to print stack trace information of Wt hSt ackTr ace events. The sample
recursively calls the method fi r st Func six times. This method creates an event named
WthStackTrace. Every time an Wt hSt ackTr ace occurs, information about the event's stack
trace is printed.

inport java.util.List;
inport java.util.function.Consuner;

inport jdk.jfr.Event;

inport jdk.jfr.Event Type;

inport jdk.jfr.Label;

i nport jdk.jfr.Name;

inport jdk.jfr.StackTrace;

i nport jdk.jfr.consumer. RecordedEvent;

i nport jdk.jfr.consumer. RecordedFrane;

i nport jdk.jfr.consumer. RecordedSt ackTrace;
i nport jdk.jfr.consumer. RecordingStream

public class StackTraceSanpl e {

@ame("com oracl e. Wt hStackTrace")

@abel ("Wth Stack Trace")

@t ackTrace(true)

static class WthStackTrace extends Event {
String nessage;

}

public static void main(String... args) throws Exception {
Consuner <Recor dedEvent > nyCon = x -> {
Event Type et = x. get Event Type();
Systemout. println("Label: " + et.getLabel());
System out. println("Message: " + x.getVal ue("message"));
Recor dedSt ackTrace rst = x. get StackTrace();
if (rst !'=null) {
Li st <Recor dedFrane> franes = rst. get Frames();
System out . println(
"Nunber of franes: + franes. size());
for (RecordedFrame rf : franes) {
System out. println("Method, |ine nunber:
+ rf.get Method().get Name() + ", "
+ rf.getLineNunber());

}
}

Systemout.printin("");

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 4



ORACLE’

try (RecordingStreamrs

rs.startAsync();
firstFunc(5);
rs.await Term nation();

}

= new Recordi ngStream)) {
rs.onEvent ("comoracl e. Wt hStackTrace", myCon);

static void firstFunc(int n) {

if (n>0) {

secondFunc(n - 1);

}

WthStackTrace event = new WthStackTrace();
event.message = "n =

event.comit();

}

static void secondFunc(i nt
firstFunc(n);

}

The example St ackTr aceSanpl e prints output similar to the following:

Label: Wth Stack Trace

12

firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,
mai n, 86

firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,

Message: n =0
Nunber of franes:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Label: Wth Stack Trace
Message: n =1
Nunber of franes: 10
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:

Flight Recorder API Programmer’s Guide
G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

main, 86

+ Nn;

97
102
93
102
93
102
93
102
93
102
93

97
102
93
102
93
102
93
102
93

Chapter 13

September 3, 2025
Page 2 of 4



ORACLE’

Label: Wth Stack Trace

firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,
mai n, 86

firstFunc,
secondFunc,
firstFunc,
secondFunc,
firstFunc,

Message: n = 2
Nunber of franes: 8
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Label : Wth Stack Trace
Message: n = 3
Nunber of franes: 6
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:
Met hod, |ine nunber:

main, 86

Label : Wth Stack Trace
Message: n = 4

firstFunc,
secondFunc,
firstFunc,
main, 86

Nunber of franes: 4

Met hod, |ine nunber:

Met hod, |ine nunber:

Met hod, |ine nunber:

Met hod, |ine nunber:
Label: Wth Stack Trace
Message: n =5

Nunber of franes: 2

Met hod, |ine nunber:
Met hod, |ine nunber:

firstFunc,
main, 86

97
102
93
102
93
102
93

97
102

93
102

93

97
102
93

97

Chapter 13

An event's stack trace, an instance of Recor dedSt ackTr ace, consists of a list of
Recor dedFr ane instances. You can obtain the following information from a Recor dedFr ane
with these methods:

e get Met hod() : Returns the method from which the event was run.

e get Li neNunber () : Returns the line number from which the event was run.

e isJavaFrane(): Indicates whether the Recor dedFr ane is a Java frame.

e get Byt ecodel ndex() : Returns the bytecode index from which the event was run.

e get Type() : Returs the frame type; possible values include I nterpreted, JI T conpil ed,

and I nline

d.

Flight Recorder uses a default stack depth of 64 method calls, which is more than enough for

this example. You can change this with the st ackdept h command-line option:

- XX: Fl i ght Recor der Opt i ons: st ackdept h=dept h

Flight Recorder API Programmer’s Guide
G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 3 of 4



ORACLE
Chapter 13

Note that values greater than 64 could create significant overhead and reduce performance.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 4 of 4



Filter Events with SettingDefinition

The example Fi | t eri ngSanpl e. j ava (along with RegExpControl . j ava) uses a

Set ti ngDef i ni ti on to filter which events Flight Recorder records. In this example, it
records Hel | 0 events that have a value that starts with g in its message field.

i nport java.io.|CException;

inport jdk.jfr.Description;
inport jdk.jfr.Event;

inport jdk.jfr.Label;

i nport jdk.jfr.Narme;

i nport jdk.jfr.Recording;

inport jdk.jfr.SettingDefinition;

public class FilteringSanple {

@ame("comoracle. FilteredHel | 0")

@abel ("Hello Wth Message Filter")

static class FilteredHel | o extends Event {
@abel ("Message")
String nessage;

@abel ("Message Filter")

@escription("Filters nmessages with regular expressions")

@ettingDefinition

protected bool ean nessageFilter(RegExpControl

return control.mtches(nessage);

}
}

control) {

public static void main(String[] args) throws | CException {

try (Recording r = new Recording()) {

r.enabl e(FilteredHel | 0. class).w th("nessageFilter", "g.*");

r.start();

FilteredHel | o greenEvent = new FilteredHello();
FilteredHel | o yel | owEvent = new FilteredHel I o();
FilteredHel | o redEvent = new FilteredHello();

greenEvent. message = "green";
yel | owEvent . message = "yel | ow';
redEvent . nessage = "red";
greenkEvent. commit();

yel | owEvent. commit();
redEvent.commit();

Flight Recorder API Programmer’s Guide

G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 1 of 3



ORACLE’

The example Fi | t eri ngSanpl e requires RegExpControl . j ava:

inport java.util. Set;
inport java.util.regex.Pattern;

inport jdk.jfr.SettingControl;

public class RegExpControl extends SettingControl {

private Pattern pattern = Pattern.conpile(".*");

@verride
public void setValue(String value) {
this.pattern = Pattern. conpil e(val ue);

}

@verride

public String conbi ne(Set<String> val ues) {
return String.join("|", values);

}

@verride

public String getValue() {
return pattern.toString();
}

public bool ean matches(String s) {
return pattern. matcher(s).find();
}

The last command prints output similar to the following:

comoracle. FilteredHello {
startTime = 23: 38: 28. 364
message = "green"

@ettingDefinition
protected bool ean nessageFilter(RegExpControl

return control . mtches(nessage);

Flight Recorder API Programmer’s Guide

G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

control) {

Chapter 14

Compile Fi | teri ngSanpl e. j ava and RegExpControl . j ava, then run Fi | teri ngSanpl e
with the following commands:

java - XX: StartFlightRecording:filename=filteringsanple.jfr FilteringSanple
jfr print --events FilteredHello filteringsanple.jfr

The annotation @et t i ngDef i ni t i on specifies which method Flight Recorder calls to
determine whether it records a particular event. In this example, it calls
messageFi | t er (RegExpControl):

September 3, 2025
Page 2 of 3



ORACLE
Chapter 14

This method's parameter, RegExpCont r ol , extends the class Set t i ngCont rol . In this
example, RegExpControl . j ava implements a regular expression setting control; the method
mat ches(String) returns true when its string matches the field pat t er n (which an application
can change with the set Val ue( St ri ng) method).

The methods set Val ue(), get Val ue() and conbi ne( Set <St ri ng>) methods are
invoked when a setting value changes, which typically happens when a recording is started or
stopped. The conbi ne( Set <St ri ng>) method is invoked to resolve what value to use when
multiple recordings are running at the same time.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 3 of 3



Exclude Fields from Being Persisted with the
transient Keyword

You can exclude fields from being persisted with the t r ansi ent keyword. The example
Excl udeFi el dsSanpl e. j ava demonstrates this.

inport jdk.jfr.Event;
inport jdk.jfr.Label;
i nport jdk.jfr.Name;

public class Excl udeFi el dsSanpl e {

@\ane("com or acl e. Message")

@abel ("Message")

static class Message extends Event {
String nessageA;
transient String nessageB;
String nessageC,

}

public static void main(String... args) {
Message event = new Message();
event . messageA = "hel |l 0";
event.messageB = "world"; // will not be persisted.
event. messageC = "!1",;
event.comit();

Run Excl udeFi el dsSanpl e with the following commands:

java - XX: StartFlight Recording: fil enanme=excl udefi el dssanple.jfr
Excl udeFi el dsSanpl e. j ava
jfr print --events Message excludefiel dssanple.jfr

The last command prints output similar to the following:

com oracl e. Message {
startTime = 23:41:15. 425
messageA = "hel |l 0"
nmessageC = "!"

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Manually Register and Unregister an Event

By default, an event is automatically registered when the event class is initialized. Alternatively,
you can manually register an event with the @Regi st er ed annotation. One reason to do this
is to take control of the security context in which the event is initialized.

The difference between the @nabl ed annotation and the @Regi st er ed annotation is that
when an event is unregistered, its metadata, such as the field layout, is not available for
inspection. A call to FI i ght Recor der: : r egi st er can ensure that an event class is visible
for configuration, for example, to a Java Management Extensions (JMX) client.

The example Regi strati onSanpl e. j ava demonstrates this:

inport jdk.jfr.Event;

inport jdk.jfr.FlightRecorder;
inport jdk.jfr.Label;

i nport jdk.jfr.Narme;

inport jdk.jfr.Registered;

public class RegistrationSanmple {

@anme("com or acl e. Message")

@abel (" Message")

@Regi stered(fal se)

static class Message extends Event {
String nessage;

}

public static void main(String... args) {
Message eventl

event 1. nessage
event 1. commit();

new Message();
"Not registered, so you won't see this";

Fl i ght Recorder.regi ster(Message. cl ass);

Message event2 = new Message();

event 2. nessage = "Now registered, so you will see this!";
event2.commit();

Fl i ght Recor der. unregi st er (Message. cl ass);

Message event3
event 3. nessage
event 3. commit();

new Message();
"Not registered again, so you won't see this";

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Flight Recorder Configurations

Flight Recorder configurations control the amount of data that is recorded.

Flight Recorder uses two preconfigured configurations, default.jfc and profile.jfc. These
configurations have predefined settings for each event type. Both of these configurations are
located in <j ava_hone>/1i b/ j f r. By default, Flight Recorder uses the defaul t.jfc
configuration when you start a recording. The def aul t . j f ¢ configuration is recommended for
continuous recordings. It gives a good balance between data and performance (typically, less
than 1% overhead). The profil e. | f ¢ configuration records more events and is useful while
profiling an application.

In most cases, the preconfigured configurations are sufficient. However, there might be a
scenario while analyzing a recording that some events are disabled by default. To enable these
events, create a custom configuration. Use JDK Mission Control to configure the event settings
by using one of the existing configurations. Make a copy of an existing configuration and then
modify it. Don't modify the default configurations. Specify which configuration to use with the
settings command-line option when starting a recording. For example:

XX: StartFl i ght Recording: fil ename=recording.jfr,dunponexit=true,settings=default.]j
fc

XX: StartFl i ght Recording: fil ename=recording.jfr, dunponexit=true, settings=nysetting
s.jfc

Flight Recorder API Programmer’s Guide

G29149-01

September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Monitor Events with Flight Recorder Event
Streaming API

The Flight Recorder event steaming API enables you to consume Flight Recorder data
continuously. This section shows you three ways you can do this:

* Create Event Stream in Process, Active: Creates an event stream at the same time a
recording is created

e Create Event Stream in Process, Passive: Creates a passive stream that listens for events,
but what gets recorded is controlled by external means

e Create Event Stream from External Process: Creates an event stream from a separate
Java process

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 1



Create Event Stream in Process, Active

The sample St reanEvent sSanpl e. j ava creates an event stream at the same time a recording
is created. An event stream is a sequence of events.

The class Recor di ngSt r eamstarts a recording and creates an event stream at the same
time. The sample calls Thr ead. sl eep(1000) three times, which creates three j dk. Thr eadSl| eep
events. The Event Streaming API prints the j dk. Thr eadS| eep events when they occur:

i nport jdk.jfr.Configuration;
inport jdk.jfr.consuner.RecordingStream

public class StreanEventsSanple {

public static void main(String... args) throws Exception {
Configuration ¢ = Configuration.getConfiguration("profile");
try (RecordingStreamrs = new RecordingStreanm(c)) {
rs.onEvent ("j dk. ThreadSl eep", Systemout::println);

Systemout.printIn("Starting recording stream...");
rs.startAsync();
for (int i =0; i <3; i++) {

Systemout. printin("Sleeping for 1s...");
Thread. sl eep(1000);

Run St r eankEvent sSanpl e with the following command:

java - XX: Start Fl i ght Recordi ng StreanEvent sSanpl e. ] ava

It prints output similar to the following:

Started recording 1. No linmt specified, using maxsize=250MB as default.

Use jcnd 7400 JFR dunmp name=1 fil ename=FI LEPATH to copy recording data to
file.
Starting recording stream...
Sl eeping for 1s...
Sl eeping for 1s...
j dk. ThreadSl eep {
startTime = 00: 26: 42. 463
duration = 2.14 s
time = 1.00 s

}
Sl eeping for 1s...
Flight Recorder API Programmer’s Guide

G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 2



ORACLE
Chapter 18

j dk. ThreadSl eep {
startTime = 00: 26: 44. 602
duration = 1.04 s
time = 1.00 s

Follow these steps to create an event stream from a recording with the Recor di ngSt r eam
class:

1. Optionally specify a predefined configuration ("default" or "profile”) with the
Confi gur ati on class.

2. Create a Recor di ngSt r eaminstance with either the
Confi guration. get Configuration() or
Confi gurati on. get Confi gurati on(Confi guration) method.

3. Optionally enable events that you want to include in the event stream with the
Recor di ngStream : enabl e(Stri ng) method.

4. Specify actions to perform on events in the stream. To specify an action to perform on all
events, use the onEvent ( Consumner <Recor dedEvent >) method. For example, the
following statement prints the name of all events in the stream to standard output:

rs.onEvent(e -> { Systemout.println(e.getEvent Type().getNane()); });

Use the onEvent (Stri ng, Consuner <Recor dedEvent >) to specify an action to
perform on a specific event. For example, the following statement prints events whose
name matches j dk. Thr eadSl eep:

rs.onkEvent ("j dk. ThreadSl eep", Systemout::println);

5. Start the event stream with either the st art () orstart Async() method. This sample
calls st art Async( ), which runs the stream in a background thread. If you call the
start () method, then the application will not proceed pass this method call until the
stream is closed.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 2



Create Event Stream in Process, Passive

The sample Passi veEvent St r eanSanpl e. j ava starts a passive event stream with the method
Event St r eam openReposi t or y() . As with any event stream, a passive event stream
listens for events; in this example, it listens for j dk. CPULoad events. However, what gets
recorded is controlled by external means, for example, by the command-line option -

XX: Start Fl i ght Recordi ng, the j cnd command JFR. st art, or an API (for example,
Recording: :start()).

The sample Passi veEvent St r eanSanpl e. j ava creates an event stream not with
Recor di ngSt r eambut with Event St r eam openReposi t or y() . An event stream requires
a recording; this sample obtains it from the command-line option - XX: St art Fl i ght Recor di ng.

inport java.util.concurrent.atomni c.Atoniclnteger;
i nport jdk.jfr.consumer. Event Stream
public class PassiveEvent StreanSanpl e {
static int NUMBER CPULOAD EVENTS = 3;
public static void main(String... args) throws Exception {
Atomiclnteger timer = new Atomiclnteger();

try (Event Stream es = Event Stream openRepository()) {
es. onEvent ("j dk. CPULoad", event -> {

Systemout.printIn("CPU Load " + event.getEndTinme());

Systemout.printin(" Michine total: "
+ 100 * event.getFl oat ("nmachineTotal ") + "%);

Systemout. println(
" JVM User: " + 100 * event.getFloat("jvmser") +
"),

Systemout. println(
" JVM System " + 100 * event.getFloat("jvnBystent) +
"),

Systemout. println();

if (timer.increment AndGet () == NUMBER_CPULOAD EVENTS) {
Systemexit(0);

}

1

es.start();

Run Passi veEvent St r eanSanpl e with the following command:
java - XX: Start Fl i ght Recordi ng Passi veEvent St reanfanpl e. j ava
Flight Recorder API Programmer’s Guide

G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 2



ORACLE’

It prints output similar to the following:

Chapter 19

Started recording 1. No linmit specified, using maxsize=250MB as default.

Use jcnd 12352 JFR dunp nane=1 fil ename=FI LEPATH to copy recording data to

file.

CPU Load 2020-01- 24T05: 34: 36. 2655846867
Machi ne total: 19.3799%
JVM User: 5.2175264%
JVM System 1.8634024%

CPU Load 2020-01- 24T05: 34: 37. 3100498592
Machi ne total: 5.2533073%
JUM User: 0.0%
JVM System 0.3899041%

CPU Load 2020-01- 24T05: 34: 38. 3737960702
Machine total: 7.242967%
JUM User: 0.0%
JVM System 1.1451485%

Flight Recorder API Programmer’s Guide

G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 2 of 2



Create Event Stream from External Process

The sample St r eanExt er nal Event sW t hAt t achAPI Sanpl e. j ava creates an event stream from
a separate Java process, the sample Sl eepOneSecondl nt erval s. j ava.

Sl eepOneSecondl nt er val s repeatedly sleeps for 1 second intervals; as demonstrated in
Create Event Stream in Process, Active, every time Thr ead. sl eep() is called, a
j dk. Thr eadSl eep event occurs.

public class Sl eepOneSecondlntervals {

public static void main(String... args) throws Exception {
long pid = ProcessHandl e. current (). pid();
Systemout.printIn("Process ID: " + pid);
whil e(true) {
Systemout.println("Sl eeping for 1s...");
Thr ead. sl eep(1000) ;

St reanExt er nal Event sW t hAt t achAPI Sanpl e uses the Attach API to obtain the virtual machine
in which Sl eepOneSecondl nt erval s is running. From this virtual machine,

St reanExt er nal Event sSW t hAt t achAPI Sanpl e obtains the location of its Flight Recorder
repository though the j dk. j fr.reposi t ory property. It then creates an Event St r eamwith this
repository through the Event St r eam : openReposi t or y( Pat hs) method.

inport java.nio.file.Paths;
inport java.util.Optional;
inport java.util.Properties;

i nport com sun. tool s.attach. Virtual Machi ne;
inport comsun.tools.attach. Virtual Machi neDescri ptor;

inport jdk.jfr.consuner.EventStream

public class StreanExternal Event sWthAttachAPI Sanpl e {
public static void main(String... args) throws Exception {

Optional <Vi rtual Machi neDescriptor> vmd =
Virtual Machine.list().stream)
filter(v -> v.displayName()
.contai ns("Sl eepOneSecondl nterval s"))
findFirst();

if (vnd.isEmty()) {
t hrow new Runti meException("Cannot find VM for
Sl eepOneSecondl nterval s");

}

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 1 of 4



ORACLE’

Vi rtual Machine vm = Virtual Machi ne. attach(vnd. get());

/] Get systemproperties fromattached VM

Properties props = vm get SystenProperties();

String repository = props.getProperty("jdk.jfr.repository");

Systemout.printin("jdk.jfr.repository: " + repository);

try (EventStreames = Event Stream
. openReposi tory(Paths. get (repository))) {

Systemout. println("Found repository ...");
es. onEvent ("j dk. ThreadSl eep”, Systemout::println);
es.start();

Compile S| eepOneSecondl nt erval s. j ava and
St r eanExt er nal Event sWt hAt t achAPI Sanpl e. j ava. Then run
Sl eepOneSecondl nt er val s with this command:

java - XX: Start Fl i ght Recordi ng Sl eepOneSecondl nterval s

In a new command shell, run St r eanExt er nal Event sWt hAt t achAPI Sanpl e:

java StreanExternal Event sWt hAtt achAPI Sanpl e

It prints output similar to the following:

jdk.jfr.repository: C\Users\<your user
nanme>\ AppDat a\ Local \ Tenp\ 2019 12 08 23 32 47 5100
Found repository ...
j dk. ThreadSl eep {
startTime = 00: 15: 31. 643
duration = 1.04 s

time

=1.00 s

event Thread = "main" (javaThreadld = 1)
stackTrace = |

]
}

j ava. | ang. Thread. sl eep(l ong)
Sl eepOneSecondl nterval s. mai n(String[]) line: 8

j dk. ThreadSl eep {
start Tine = 00: 15: 32. 689
duration = 1.05 s

time

=1.00 s

event Thread = "main" (javaThreadld = 1)
stackTrace = |

]

j ava. | ang. Thread. sl eep(l ong)
Sl eepOneSecondl nterval s. mai n(String[]) line: 8

Flight Recorder API Programmer’s Guide

G29149-01

Copyright © 2020, 2025, Oracle and/or its affiliates.

Chapter 20

September 3, 2025
Page 2 of 4



ORACLE
Chapter 20

The sample St r eanExt er nal Event sWt hicndSanpl e. j ava is similar to

St reanExt er nal Event sW t hAt t achAPI Sanpl e except it starts Flight Recorder for

Sl eepOneSecondl nt er val s with the Attach API. With this API, the sample runs the command
jcmd <PI D> JFR. start with the PID of Sl eepOneSecondl nt erval s:

i nport java.io.BufferedReader;

i nport java.io.lCException;

i nport java.io.lnputStreanReader;
inport java.nio.file.Paths;
inport java.util.Properties;

i nport com sun. tools. attach. Virtual Machi ne;
inport jdk.jfr.consumer. Event Stream

public class StreanExternal Event sWthJcmdSanpl e {
public static void main(String... args) throws Exception {
if (args[0] == null) {
Systemerr.println("Requires PID of process as argunment");
Systemexit(1);
}

String pid = args[0];

Process p = Runtime. getRuntine().exec(
"jemd " + pid + " JFR start");

print Qut put (p);

/] Wit for jecmd to start the recording
Thread. sl eep(1000);

Virtual Machine vm = Virtual Machi ne. attach(pid);

Properties props = vm get SystenProperties();

String repository = props.getProperty("jdk.jfr.repository”);
Systemout.printIn("jdk.jfr.repository: " + repository);

try (EventStreames = Event Stream
.openReposi tory(Pat hs. get(repository))) {

Systemout. println("Found repository ...");
es.onEvent ("j dk. ThreadSl| eep", Systemout::println);
es.start();

}

private static void printQutput(Process proc) throws | OException {
Buf f er edReader stdlnput = new BufferedReader (
new | nput St r eanReader (proc. get I nput Strean()));

Buf f er edReader stdError = new BufferedReader (
new | nput St reanReader (proc. getErrorStrean()));

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 3 of 4



ORACLE
Chapter 20

/1 Read the output fromthe comrand
Systemout. println(
"Here is the standard output of the command:\n");
String s = null;
while ((s = stdlnput.readLine()) !'= null) {
Systemout . println(s);

}

/1 Read any errors fromthe attenpted conmmand
Systemout. println(

"Here is the standard error of the " + "command (if any):\n");
while ((s = stdError.readLine()) !'= null) {

Systemout . println(s);

}

Compile S| eepOneSecondl nt erval s. j ava and
St r eanExt er nal Event sW t hJcndSanpl e. j ava. Then run Sl eepOneSecondl nt erval s
with this command:

java - XX: Start Fl i ght Recordi ng Sl eepOneSecondl ntervals

It prints output similar to the following:

Started recording 1. No linit specified, using maxsize=250MB as defaul t.

Use jcnmd 5100 JFR dunp name=1 fil ename=FI LEPATH to copy recording data to
file.

Process ID: 5100

Sl eeping for 1s...

Sleeping for 1s...

Sleeping for 1s...

Note the PID for Sl eepOneSecondl nt er val s (in this example, it's 5100). While this sample is
running, in a new command shell, run St r eanExt er nal Event sWt hlcndSanpl e with this
command.

java StreankExternal Event sWthJcndSanpl e <PI D of Sl eepOneSecondl nt erval s>

It prints output similar to St r eanExt er nal Event sWt hAtt achAPI Sanpl e.

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 4 of 4



Parsing a Recording File

The example Par seRecor di ngFi | eSanpl e. j ava describes various ways you can parse a

recording file. It starts a recording to record several Hel | 0 and Message events.

i nport java.io.lCException;
inport java.nio.file.Files;
inport java.nio.file.Path;

inport jdk.jfr.Event;

inport jdk.jfr.Event Type;

inport jdk.jfr.Label;

i nport jdk.jfr.Name;

i nport jdk.jfr.Recording;

inport jdk.jfr.consumer. Event Stream
inport jdk.jfr.consumer. RecordingFile;

public class ParseRecordi ngFil eSanpl e {

@\ame("com oracl e. Hel | 0")

@abel ("Hello World!'")

static class Hello extends Event {
@abel ("G eeting")
String greeting;

}

@\ane("com or acl e. Message")

@abel (" Message")

static class Message extends Event {
@abel ("Text")
String text;

}

public static void main(String... args) throws |CException {

try (Recording r = new Recording()) {
r.start();
for (int i =0; i <3; i+t {

Message messageBEvent = new Message();

messageEvent . begi n();
messageEvent.text = "message
messageEvent . commit();

Hel | o hel | oEvent = new Hell o();

hel | oEvent . begi n();
hel | oEvent.greeting = "hello
hel | oEvent. comi t ();

}
r.stop();

)
Path file = Files.createTenpFile("recording", ".jfr");

Flight Recorder API Programmer’s Guide
G29149-01
Copyright © 2020, 2025, Oracle and/or its affiliates.

September 3, 2025
Page 1 of 4



r.dump(file);

try (var recordingFile = new RecordingFile(file)) {
Systemout . println("Readi ng events one by one");
Systemout. println(" "),
whil e (recordingFile. hashMreEvents()) {
var e = recordingFile.readEvent();
String eventNane = e. get Event Type(). get Nane();
Systemout. println("Name: " + event Name);

}
Systemout. println();

Systemout.printIn("List of registered event types");

Systemout. println(" ");
for (EventType event Type : recordingFile.readEvent Types())
{

System out. println(event Type. get Narme());
}

}
Systemout. println();

Systemout. println("Reading all events at once");
Systemout. println(" ")

for (var e : RecordingFile.readAl | Events(file)) {
String eventNane = e. get Event Type(). get Nane();
Systemout. printin("Nane: " + event Nange);

}
Systemout. println();

Systemout. println("Reading events one by one, printing only "
+ "com oracl e. Message events");

Systemout. println(" "
+ n Il);

try (Event Stream event Stream = Event Stream openFile(file)) {
event Stream onEvent ("com oracl e. Message”, e -> {
System out. print! n(
“Name: " + e.getEvent Type().getNane());
D

event Stream start ();

Run Par seRecor di ngFi | eSanpl e with this command:

j ava ParseRecordi ngFi | eSanpl e. j ava

When running Par seRecor di ngFi | eSanpl e, you don't have to start Flight Recorder with the
command-line option - XX: St art Fl i ght Recor di ng; the method Recor di ng. start () starts it.
Par seRecor di ngFi | eSanpl e prints the following:

Readi ng events one by one

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025
Copyright © 2020, 2025, Oracle and/or its affiliates. Page 2 of 4



Nane: com oracl e. Message
Nanme: comoracle.Hello
Nane: com oracl e. Message
Nanme: comoracle.Hello
Nane: com oracl e. Message
Nanme: comoracle.Hello

List of registered event types

j dk. ThreadSt art
j dk. Thr eadEnd
j dk. ThreadSl eep

j dk. X509Val i dat i on
com or acl e. Message
comoracle. Hello

Reading all events at once

Nane: com oracl e. Message
Nanme: comoracle.Hello
Nane: com oracl e. Message
Nanme: comoracle.Hello
Nane: com oracl e. Message
Name: comoracle.Hello

Readi ng events one by one, printing only comoracl e. Message events

Nane: com oracl e. Message
Nane: com oracl e. Message
Nane: com oracl e. Message

Write Recording Data to a File

Par seRecor di ngFi | eSanpl e demonstrates several ways you can parse a recording file.
However, you first need a recording file, and this sample doesn't create one at the command
line. Instead, it calls Recor di ng. dunp( Pat h) to write recording data to a temporary file:

Path file = Files.createTenpFile("recording", ".jfr");
r.dunp(file);

Note that the recording must be started but not necessarily stopped.

Read Events One by One
Use this technique for large recordings and if you need to access metadata.

The method Recor di ngFi | e. readEvent () reads the next event in the recording while
Recor di ngEvent . hasMbr eEvent s() returnstrue if unread events exist in the recording
file:

whil e (recordingFile. hashreEvents()) {
var e = recordingFile.readEvent();
String eventNane = e. get Event Type(). get Nane();

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 3 of 4



Systemout. println("Name: " + event Name);

List Registered Event Types

The method Recor di ngFi | e. readEvent Types() returns a list of all event types in the
recording.

Read All Events at Once
Use this technique for smaller recordings that fit in memory.

The method Recor di ngFi | e. readAl | Event s( Pat h) returns a list of all events in the
recording file. It's intended for small recording files where it's more convenient to read all
events in a single operation. It's not intended for reading large recording files.

Read Only Specific Events with Event Streaming API

To process only specific events, you could read events one by one with

Recor di ngFi | e. readEvent (), as described previously, then check the event's name.
However, if you use the event streaming API, then event objects of the same type are reused
to reduced allocation pressure.

This technique involves creating an event stream with Event St r eam openFi | e( Pat h) ,
then calling Event St r eam onEvent (Stri ng event Nane, Consuner) to register an
action that will be performed if event Name matches the event's name:

try (Event Stream event Stream = Event Stream openFile(file)) {
event St ream onEvent ("com or acl e. Message", e -> {
Systemout. println("Name: " +
e. get Event Type(). get Nane());
b

event Stream start();

Flight Recorder API Programmer’s Guide
G29149-01 September 3, 2025

Copyright © 2020, 2025, Oracle and/or its affiliates. Page 4 of 4



	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	Part I Why Use the API?
	Part II Create Events
	1 Creating and Recording Your First Event
	2 Event Metadata
	3 Guidelines for Naming and Labeling Events
	4 Categories
	5 Measuring Time
	6 Data Types
	7 Dynamic Events
	8 Custom Annotations
	9 Inheritance of Annotations, Settings, and Fields

	Part III Configure Events and Flight Recorder
	10 Enable and Disable Events
	11 Event Threshold
	The shouldCommit Method

	12 Periodic Events
	13 Printing Event Stack Trace
	14 Filter Events with SettingDefinition
	15 Exclude Fields from Being Persisted with the transient Keyword
	16 Manually Register and Unregister an Event
	17 Flight Recorder Configurations

	Part IV Monitor Events with Flight Recorder Event Streaming API
	18 Create Event Stream in Process, Active
	19 Create Event Stream in Process, Passive
	20 Create Event Stream from External Process

	Part V Parsing a Recording File

