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Abstract
In 1982, Demailly showed that the Hodge conjecture follows from the statement that
all positive closed currents with rational cohomology class can be approximated by
positive linear combinations of integration currents. Moreover, in 2012, he showed
that the Hodge conjecture is equivalent to the statement that any .p;p/-dimensional
closed current with rational cohomology class can be approximated by linear com-
binations of integration currents. In this article, we find a current which does not
verify the former statement on a smooth projective variety for which the Hodge con-
jecture is known to hold. To construct this current, we extend the framework of “trop-
ical currents”—recently introduced by the first author—from tori to toric varieties.
We discuss extremality properties of tropical currents and show that the cohomology
class of a tropical current is the recession of its underlying tropical variety. The coun-
terexample is obtained from a tropical surface in R4 whose intersection form does not
have the right signature in terms of the Hodge index theorem.
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1. Introduction
The main goal of this article is to construct an example that does not satisfy a strong
version of the Hodge conjecture for strongly positive currents introduced in [9]. To
state our main results, we first recall some basic definitions, following [12, Chapter I].

DUKE MATHEMATICAL JOURNAL
Vol. 166, No. 14, © 2017 DOI 10.1215/00127094-2017-0017
Received 9 March 2016. Revision received 27 February 2017.
First published online 6 September 2017.
2010 Mathematics Subject Classification. Primary 14T05, 32U40, 14M25; Secondary 42B05, 14C30.

2749

http://dx.doi.org/10.1215/00127094-2017-0017


2750 BABAEE and HUH

Let X be a complex manifold of dimension n. If k is a nonnegative integer, we
denote by Dk.X/ the space of smooth complex differential forms of degree k with
compact support, endowed with the inductive limit topology. The space of currents of
dimension k is the topological dual space D0

k
.X/, that is, the space of all continuous

linear functionals on Dk.X/:

D0k.X/ WDDk.X/0:

The pairing between a current T and a differential form ' will be denoted hT; 'i.
A k-dimensional current T is a weak limit of a sequence of k-dimensional currents Ti
if

lim
i!1
hTi ; 'i D hT; 'i for all ' 2Dk.X/:

There are corresponding decompositions according to the bidegree and bidimension

Dk.X/D
M

pCqDk

Dp;q.X/; D0k.X/D
M

pCqDk

D0p;q.X/:

Most operations on smooth differential forms extend by duality to currents. For
instance, the exterior derivative of a k-dimensional current T is the .k�1/-dimensional
current dT defined by

hdT; 'i D .�1/kC1hT; d'i; ' 2Dk�1.X/:

The current T is closed if its exterior derivative vanishes, and T is real if it is invariant
under the complex conjugation. When T is closed, it defines a cohomology class of
X , denoted ¹Tº.

The space of smooth differential forms of bidegree .p;p/ contains the cone of
positive differential forms. By definition, a smooth differential .p;p/-form ' is posi-
tive if

'.x/jS is a nonnegative volume form for all p-planes S � TxX and x 2X:

Dually, a current T of bidimension .p;p/ is strongly positive if

hT; 'i � 0 for every positive differential .p;p/-form ' on X:

Integrating along complex analytic subsets of X provides an important class of
strongly positive currents on X . If Z is a p-dimensional complex analytic subset
of X , then the integration current ŒZ� is the .p;p/-dimensional current defined by
integrating over the smooth locus˝

ŒZ�; '
˛
D

Z
Zreg

'; ' 2Dp;p.X/:
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Suppose from now on that X is an n-dimensional smooth projective algebraic
variety over the complex numbers, and let p and q be nonnegative integers with pC
q D n. Let us consider the following statements.
(HC) The Hodge conjecture: the intersection

H 2q.X;Q/\H q;q.X/

consists of classes of p-dimensional algebraic cycles with rational coeffi-
cients.

(HC0) The Hodge conjecture for currents: if T is a .p;p/-dimensional real closed
current on X with cohomology class

¹Tº 2R˝Z

�
H 2q.X;Z/=tors\H q;q.X/

�
;

then T is a weak limit of the form

T D lim
i!1

Ti ; Ti D
X
j

�ij ŒZij �;

where �ij are real numbers and Zij are p-dimensional subvarieties of X .
(HCC) The Hodge conjecture for strongly positive currents: if T is a .p;p/-

dimensional strongly positive closed current on X with cohomology class

¹Tº 2R˝Z

�
H 2q.X;Z/=tors\H q;q.X/

�
;

then T is a weak limit of the form

T D lim
i!1

Ti ; Ti D
X
j

�ij ŒZij �;

where �ij are positive real numbers and Zij are p-dimensional subvarieties
of X .

Demailly proved in [9, Théorème 1.10] that, for any smooth projective variety
and q as above,

HCC H) HC:

Furthermore, he showed that HCC holds for any smooth projective variety when
q D 1 (see [9, Théorème 1.9] and the proof given in [11, Chapter 13]). In [11, Theo-
rem 13.40], Demailly showed that, in fact, for any smooth projective variety and q,

HC () HC0;

and asked whether HC0 implies HCC (see [11, Remark 13.43]). In Theorem 5.1, we
show that HCC fails even on toric varieties, where the Hodge conjecture readily holds.
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THEOREM 1.1
There is a 4-dimensional smooth projective toric variety X and a .2; 2/-dimensional
strongly positive closed current T on X with the following properties.
(1) The cohomology class of T satisfies

¹Tº 2H 4.X;Z/=tors\H 2;2.X/:

(2) The current T is not a weak limit of the form

lim
i!1

Ti ; Ti D
X
j

�ij ŒZij �;

where �ij are nonnegative real numbers and Zij are algebraic surfaces in X .

The above current T generates an extremal ray of the cone of strongly positive
closed currents on X : if TD T1CT2 is any decomposition of T into strongly positive
closed currents, then both T1 and T2 are nonnegative multiples of T. This extremal-
ity relates to HCC by the following application of Milman’s converse to the Krein–
Milman theorem (see Proposition 5.10 and the proof of [9, Proposition 5.2]).

PROPOSITION 1.2
Let X be an algebraic variety, and let T be a .p;p/-dimensional current on X of the
form

TD lim
i!1

Ti ; Ti D
X
j

�ij ŒZij �;

where �ij are nonnegative real numbers and Zij are p-dimensional irreducible sub-
varieties of X . If T generates an extremal ray of the cone of strongly positive closed
currents on X , then there are nonnegative real numbers �i and p-dimensional irre-
ducible subvarieties Zi �X such that

TD lim
i!1

�i ŒZi �:

Therefore, if we assume that HCC holds for a smooth projective variety X , then
every extremal strongly positive closed current with rational cohomology class can
be approximated by positive multiples of integration currents along irreducible sub-
varieties of X . Lelong [27] proved that the integration currents along irreducible ana-
lytic subsets are extremal and asked whether those are the only extremal currents.
Demailly [9] found the first extremal strongly positive closed current on CP2 with a
support of real dimension 3, which, therefore, cannot be an integration current along
any analytic set. Later on, Bedford noticed that many extremal currents that occur
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in dynamical systems on several complex variables have fractal sets as their sup-
port, and extremal currents of this type were later generated in several works such as
[2], [3], [5], [13], [18], [21], [23], and [31] in codimension 1, and [14]–[16], and [22]
in higher codimensions. These extremal currents, though, were readily known to be a
weak limit of integration currents by the methods of their construction. The first trop-
ical approach to extremal currents was established in the Ph.D. dissertation of the first
author [1]. He introduced the notion of tropical currents and deduced certain sufficient
local conditions which implied extremality in any dimension and codimension.

In Section 2, we provide a detailed construction of tropical currents. A tropical
current is a certain closed current of bidimension .p;p/ on the algebraic torus .C�/n,
which is associated to a tropical variety of dimension p in Rn. A tropical variety is a
weighted rational polyhedral complex C which is balanced (see Definition 2.8). The
tropical current associated to C, denoted by TC, has support

jTCj D Log�1.C/;

where Log is the map defined by

Log W .C�/n �!Rn; .z1; : : : ; zn/ 7�!
�
�log jz1j; : : : ;�log jznj

�
:

To construct TC from a weighted complex C, for each p-dimensional cell � in C we
consider a current T� , the average of the integration currents along fibers of a natural
fibration over the real torus Log�1.�/ �! .S1/n�p . The current TC is then defined
by setting

TC D
X
�

wC.�/T� ;

where the sum is over all p-dimensional cells in C and wC.�/ is the corresponding
weight. In Theorem 2.9, we give the following criterion for the closedness of the
resulting current TC (see [1, Theorem 3.1.8]).

THEOREM 1.3
A weighted complex C is balanced if and only if the current TC is closed.

In Section 3, we prove the above criterion for closedness of TC, as well as the
following criterion for strong extremality of TC. A closed current T with measure
coefficients is said to be strongly extremal if any closed current T0 with measure coef-
ficients which has the same dimension and support as T is a constant multiple of T.
(Note that if T is strongly positive and strongly extremal, then T generates an extremal
ray in the cone of strongly positive closed currents.) Similarly, a balanced weighted
complex C is said to be strongly extremal if any balanced weighted complex C0 which
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has the same dimension and support as C is a constant multiple of C. In Theorem 2.12,
we prove the following improvement of extremality results in [1, Theorem 3.1.8].

THEOREM 1.4
A nondegenerate tropical variety C is strongly extremal if and only if the tropical
current TC is strongly extremal.

Here a tropical variety in Rn is said to be nondegenerate if its support is con-
tained in no proper subspace of Rn. We note that there is an abundance of strongly
extremal tropical varieties. For example, the Bergman fan of any simple matroid is a
strongly extremal tropical variety (see [24, Theorem 38]). There are 376467 noniso-
morphic simple matroids on nine elements (see [29]), producing that many strongly
extremal, strongly positive closed currents on .C�/8. By Theorem 1.5 below, all of
them have distinct cohomology classes in one fixed toric compactification of .C�/8,
the one associated to the permutohedron (see [24]). In fact, Demailly’s first example
of a nonanalytic extremal strongly positive current in [9] is the tropical current asso-
ciated to the simplest nontrivial matroid, namely, the rank 2 simple matroid on three
elements.

In Section 4, we consider the trivial extension TC of the tropical current TC to
an n-dimensional smooth projective toric variety X whose fan is compatible with C

(see Definition 4.5). According to Fulton and Sturmfels [19], cohomology classes of
a complete toric variety bijectively correspond to balanced weighted fans compatible
with the fan of the toric variety. In Theorem 4.7, we give a complete description of
the cohomology class of TC in X .

THEOREM 1.5
If C is a p-dimensional tropical variety compatible with the fan of X , then

¹TCº D rec.C/ 2H q;q.X/;

where rec.C/ is the recession of C (recalled in Section 4.2). In particular, if all poly-
hedrons in C are cones in †, then

¹TCº D C 2H q;q.X/:

The current T in Theorem 1.1 is a current of the form TC, and Theorem 1.5 plays
an important role in justifying the claimed properties of T.

In Section 5, we complete the proof of Theorem 1.1 by analyzing a certain
Laplacian matrix associated to a 2-dimensional tropical variety C. According to The-
orem 1.5, if C is compatible with the fan of an n-dimensional smooth projective
toric variety X , we may view the cohomology class of TC as a geometric graph
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G D G.C/ � Rn n ¹0º with edge weights wij satisfying the balancing condition: at
each vertex ui there is a real number di such that

diui D
X
ui�uj

wijuj ;

where the sum is over all neighbors of ui in G. We define the tropical Laplacian of C
to be the real symmetric matrix LG with entries

.LG/ij WD

8̂̂<̂
:̂
di if ui D uj ;

�wij if ui � uj ;

0 if otherwise;

where the diagonal entries di are the real numbers satisfying

diui D
X
ui�uj

wijuj :

When G is the graph of a polytope with weights given by the Hessian of the volume
of the dual polytope, the matrix LG has been considered in various contexts related
to rigidity and polyhedral combinatorics (see [7], [17], [25], [28]). In this case, LG is
known to have exactly one negative eigenvalue, by the Alexandrov–Fenchel inequal-
ity (see, e.g., [17, Proposition 4], [25, Theorem A.10]). In Proposition 5.9, using the
Hodge index theorem and the continuity of the cohomology class assignment, we
show that LG has at most one negative eigenvalue if TC is a weak limit of integration
currents along irreducible surfaces in X .

The remainder of the paper is devoted to the construction of a strongly extremal
tropical surface C whose tropical Laplacian has more than one negative eigenvalue.
For this we introduce two operations on weighted fans, F 7�! FCij (Section 5.3) and
F 7�! F �ij (Section 5.4), and repeatedly apply them to a geometric realization of the
complete bipartite graph K4;4 � R4 to arrive at C with the desired properties. By
the above Theorems 1.3–1.5, the resulting tropical current TC is a strongly extremal
strongly positive closed current which is not a weak limit of positive linear combina-
tions of integration currents along subvarieties.

2. Construction of tropical currents

2.1
Let C� be the group of nonzero complex numbers. The logarithm map is the homo-
morphism

�log WC� �!R; z 7�!� log jzj;
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and the argument map is the homomorphism

arg WC� �! S1; z 7�! z=jzj:

The argument map splits the exact sequence

0 S1 C�
�log

R 0;

giving polar coordinates to nonzero complex numbers. Under the chosen sign con-
vention, the inverse image of R>0 under the logarithm map is the punctured unit disk

D� WD
®
z 2C�

ˇ̌
jzj< 1

¯
:

Let N be a finitely generated free abelian group. There are Lie group homomor-
phisms

TN
arg˝Z1�log˝Z1

NR SN

called the logarithm map and the argument map for N , respectively, where

TN WD the complex algebraic torus C�˝Z N;

SN WD the compact real torus S1˝Z N;

NR WD the real vector space R˝Z N:

When N is the group Zn of integral points in Rn, we denote the two maps by

.C�/n

ArgLog

Rn .S1/n

2.2
A linear subspace of Rn is rational if it is generated by a subset of Zn. Corresponding
to a p-dimensional rational subspace H � Rn, there is a commutative diagram of
split exact sequences
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0 0 0

0 SH\Zn .S1/n SZn=.H\Zn/ 0

0 TH\Zn .C�/n

Log

Arg

TZn=.H\Zn/ 0

0 H Rn Rn=H 0

0 0 0

where the vertical surjections are the logarithm maps for H \Zn, Zn, and their quo-
tient. We define a Lie group homomorphism �H as the composition

�H W Log�1.H/
Arg

.S1/n SZn=.H\Zn/:

The map �H is a submersion, equivariant with respect to the action of .S1/n. Its
kernel is the closed subgroup

ker.�H /D TH\Zn � .C
�/n:

Each fiber of �H is a translation of the kernel by the action of .S1/n, and, in particular,
each fiber ��1H .x/ is a p-dimensional closed complex submanifold of .C�/n.

Definition 2.1
Let � be a complex Borel measure on SZn=.H\Zn/. We define a .p;p/-dimensional
closed current TH .�/ on .C�/n by

TH .�/ WD

Z
x2SZn=.H\Zn/

�
��1H .x/

�
d�.x/:

When � is the Haar measure on SZn=.H\Zn/ normalized byZ
x2SZn=.H\Zn/

d�.x/D 1;
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we omit � from the notation and write

TH WD TH .�/:

In other words, TH .�/ is obtained from the 0-dimensional current d� by

TH .�/D �
H
�

�
��H .d�/

�
;

where �H is the closed embedding and �H is the oriented submersion in the diagram

Log�1.H/
�H

�H

.C�/n

SZn=.H\Zn/

Each fiber of �H is invariant under the action of TH\Zn , and hence the current TH .�/
remains invariant under the action of TH\Zn :

TH .�/D t�
�
TH .�/

�
D t�

�
TH .�/

�
; t 2 TH\Zn :

The current TH .�/ is strongly positive if and only if � is a positive measure.

2.3
Let A be a p-dimensional affine subspace of Rn parallel to the linear subspace H .
For a 2A, there is a commutative diagram of corresponding translations

Log�1.A/

Log

ea

Log�1.H/

Log

A
�a

H

We define a submersion �A as the composition

�A W Log�1.A/
ea

Log�1.H/
�H

SZn=.H\Zn/:

The map �A does not depend on the choice of a, and each fiber of �A is a p-
dimensional closed complex submanifold of .C�/n invariant under the action of
TH\Zn .
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Definition 2.2
Let � be a complex Borel measure on SZn=H\Zn . We define a .p;p/-dimensional
closed current TA.�/ on .C�/n by

TA.�/ WD

Z
x2SZn=.H\Zn/

�
��1A .x/

�
d�.x/:

When � is the normalized Haar measure on SZn=.H\Zn/, we write

TA WD TA.�/:

The current TA.�/ is strongly positive if and only if � is a positive measure, and
the construction is equivariant with respect to the action of Rn by translations:

TA�b.�/D .e
�b/�

�
TA.�/

�
; b 2Rn:

Note that TA.�/ has measure coefficients. For each open subset U � .C�/n, the
restriction of TA.�/jU can be written in a unique way,

TA.�/jU D
X

jI jDjJ jDn�p

�IJ dzI ^ d NzJ ;

where z1; : : : ; zn are coordinate functions and �IJ are complex Borel measures on U .
This expression can be used to define the current 1BTA.�/, where 1B is the character-
istic function of a Borel subset B � .C�/n. We cover the torus by relatively compact
open subsets U � .C�/n and set

1BTA.�/jU WD
X

jI jDjJ jDn�p

�IJ jB dzI ^ d NzJ :

2.4
A rational polyhedron in Rn is an intersection of finitely many half-spaces of the form

hu;mi � c; m 2 .Zn/_; c 2R:

Let � be a p-dimensional rational polyhedron in Rn. We define

aff.�/ WD the affine span of �;

�ı WD the interior of � in aff.�/;

H� WD the linear subspace parallel to aff.�/:

The normal lattice of � is the quotient group

N.�/ WD Zn=.H� \Zn/:
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The normal lattice defines the .n� p/-dimensional vector spaces

N.�/R WDR˝Z N.�/; N.�/C WDC˝Z N.�/:

Definition 2.3
Let � be a complex Borel measure on SN.�/.
(1) We define a submersion �� as the restriction of �aff.�/ to Log�1.�ı/:

�� W Log�1.�ı/�! SN.�/:

(2) We define a .p;p/-dimensional current T� .�/ on .C�/n by

T� .�/ WD 1Log�1.�/Taff.�/.�/:

When � is the normalized Haar measure on SN.�/, we write

T� WD T� .�/:

Each fiber ��1� .x/ is a p-dimensional complex manifold, being an open subset
of the p-dimensional closed complex submanifold ��1aff.�/.x/ � .C

�/n. The closure

��1� .x/ is a manifold with piecewise smooth boundary, and

T� .�/D

Z
x2SN.�/

�
��1� .x/

�
d�.x/:

In other words, T� .�/ is the trivial extension to .C�/n of the pullback of the 0-
dimensional current d� along the oriented submersion �� . We compute the boundary
of T� .�/ in Proposition 2.5 below.

The construction is equivariant with respect to the action of Rn by translations:

T��b.�/D .e
�b/�

�
T� .�/

�
; b 2Rn:

The current T� .�/ is strongly positive if and only if the measure � is positive, and its
support satisfies ˇ̌

T� .�/
ˇ̌
� jT� j D Log�1.�/� .C�/n:

2.5
A polyhedral complex in Rn is locally finite if any compact subset of Rn intersects
only finitely many cells. It is easy to see that the construction of T� .�/ behaves well
with respect to subdivisions.
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PROPOSITION 2.4
If a p-dimensional rational polyhedron � is a union of p-dimensional rational poly-
hedrons �i in a locally finite polyhedral complex, then

T� .�/D
X
i

T�i .�/:

The sum is well defined because the subdivision of � is locally finite.
The boundary of T� .�/ has measure coefficients and can be understood geomet-

rically from the restrictions of the logarithm map for Zn to fibers of �aff.�/:

l�;x W �
�1
aff.�/.x/�! aff.�/; x 2 SN.�/:

Each l�;x is a translation of the logarithm map forH� \Zn and hence is a submersion.
We have

��1� .x/D l�1�;x.�
ı/:

Since l�;x is a submersion, the closure of the inverse image is the inverse image of
the closure. In particular, the closure of l�;x.�ı/ in the ambient torus is l�1�;x.�/. The
closure has the piecewise smooth boundary

@
�
l�1�;x.�/

�
D
[
�

l�1�;x.�/;

where the union is over all codimension 1 faces � of � . The smooth locus of the
boundary is the disjoint union a

�

l�1�;x.�
ı/:

The complex manifold l�;x.�ı/ has a canonical orientation, and it induces an orien-
tation on each of its boundary components l�1�;x.�

ı/, each with real codimension 1.

PROPOSITION 2.5
For any complex Borel measure � on SN.�/,

dT� .�/D�
X
���

�Z
x2SN.�/

�
l�1�;x.�/

�
d�.x/

�
;

where the sum is over all codimension 1 faces � of � .

It follows that the support of dT� .�/ satisfiesˇ̌
dT� .�/

ˇ̌
� jdT� j D

[
���

Log�1.�/� .C�/n:
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Proof
Subdividing � if necessary, we may assume that � is a manifold with corners. By
Stokes’s theorem,

d
�
l�1�;x.�/

�
D�

X
���

�
l�1�;x.�/

�
; x 2 SN.�/:

Since ��1� .x/D l�1�;x.�
ı/, we have

dT� .�/D

Z
x2SN.�/

d
�
��1� .x/

�
d�.x/

D�
X
���

�Z
x2SN.�/

�
l�1�;x.�/

�
d�.x/

�
:

We consider the important special case when � is a p-dimensional unimodular
cone in Rn, that is, a cone generated by part of a lattice basis u1; : : : ; up of Zn. Let Qx
be an element of .S1/n, and consider the closed embedding given by the monomial
map

.C�/p �! .C�/n; z 7�! Qx � zŒu1;:::;up�;

where Œu1; : : : ; up� is the matrix with column vectors u1; : : : ; up . If x is the image
of Qx in SN.�/ and � is the cone generated by u2; : : : ; up , then the map restricts to
diffeomorphisms

C� � .C�/p�1 ' ��1aff.�/.x/;

D� � .D�/p�1 ' l�1�;x.�
ı/;

S1 � .D�/p�1 ' l�1�;x.�
ı/:

2.6
A p-dimensional weighted complex in Rn is a locally finite polyhedral complex C

such that
(1) each inclusion-maximal cell � in C is rational,
(2) each inclusion-maximal cell � in C is p-dimensional, and
(3) each inclusion-maximal cell � in C is assigned a complex number wC.�/.
The weighted complex C is said to be positive if, for all p-dimensional cells � in C,

wC.�/� 0:

The support jCj of C is the union of all p-dimensional cells of C with nonzero weight.
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Definition 2.6
A p-dimensional weighted complex C0 is a refinement of C if jC0j D jCj and each
p-dimensional cell � 0 2 C0 with nonzero weight is contained in some p-dimensional
cell � 2 C with

wC0.�
0/DwC.�/:

If p-dimensional weighted complexes C1 and C2 have a common refinement, we write

C1 � C2:

This defines an equivalence relation on the set of p-dimensional weighted complexes
in Rn.

Note that any two p-dimensional weighted complexes in Rn can be added after
suitable refinements of each. This gives the set of equivalence classes of p-
dimensional weighted complexes in Rn the structure of a complex vector space.

Definition 2.7
We define a .p;p/-dimensional current TC on .C�/n by

TC WD
X
�

wC.�/T� ;

where the sum is over all p-dimensional cells in C.

(For an explicit construction of TC involving coordinates, see [1].) If C� b is the
weighted complex obtained by translating C by b 2Rn, then

TC�b D .e
�b/�.TC/:

The current TC is strongly positive if and only if the weighted complex C is positive.
The support of TC is the closed subset

jTCj D Log�1jCj � .C�/n:

Proposition 2.4 implies that equivalent weighted complexes define the same cur-
rent, and hence there is a map from the set of equivalence classes of weighted com-
plexes

' W ¹Cº 7�! TC:

For p-dimensional weighted complexes C1, C2 and complex numbers c1, c2, we
have
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Tc1¹C1ºCc2¹C2º D c1T¹C1ºC c2T¹C2º:

It is clear that the kernel of the linear map ' is trivial, and hence

C1 � C2 if and only if TC1 D TC2 :

2.7
Let � be a codimension 1 face of a p-dimensional rational polyhedron � . The differ-
ence of � and � generates a p-dimensional rational polyhedral cone containing H� ,
defining a ray in the normal space

cone.� � �/=H� �H�=H� �Rn=H� DN.�/R:

We write u�=� for the primitive generator of this ray in the lattice N.�/. For any
b 2Rn,

u��b=��b D u�=� :

Definition 2.8
A p-dimensional weighted complex C satisfies the balancing condition at � ifX

���

wC.�/u�=� D 0

in the complex vector spaceN.�/C, where the sum is over all p-dimensional cells � in
C containing � as a face. A weighted complex is balanced if it satisfies the balancing
condition at each of its codimension 1 cells.

A tropical variety is a positive and balanced weighted complex with finitely many
cells, and a tropical current is the current associated to a tropical variety. Our first
main result is the following criterion for the closedness of TC (see [1, Theorem 3.1.8]).

THEOREM 2.9
A weighted complex C is balanced if and only if TC is closed.

Theorem 2.9 follows from an explicit formula for the boundary of TC in Theo-
rem 3.8:

dTC D�
X
�

A�

�X
���

wC.�/u�=�

�
:

Here the first sum is over all codimension 1 cells � in C, the second sum is over all p-
dimensional cells � in C containing � , and A� is an injective linear map constructed
in Section 3.2 using the averaging operator of the compact Lie group SN.�/.
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2.8
Some properties of the current TC can be read off from the polyhedral geometry of
jCj. We show that this is the case for the property of TC being strongly extremal.

Definition 2.10
A closed current T with measure coefficients is strongly extremal if, for any closed
current T0 with measure coefficients which has the same dimension and support as T,
there is a complex number c such that T0 D c � T.

If T is strongly positive and strongly extremal, then T generates an extremal ray in
the cone of strongly positive closed currents. If TD T1C T2 is any decomposition of
T into strongly positive closed currents, then both T1 and T2 are nonnegative multiples
of T. Indeed, we have

jTj D jTC T1j D jTC T2j;

and hence there are constants c1 and c2 satisfying

TC T1 D c1 � T; TC T2 D c2 � T; c1; c2 � 1:

Definition 2.11
A balanced weighted complex C is strongly extremal if, for any balanced weighted
complex C0 which has the same dimension and support as C, there is a complex num-
ber c such that C0 � c � C.

A weighted complex in Rn is said to be nondegenerate if its support is contained
in no proper affine subspace of Rn. Our second main result provides a new class of
strongly extremal closed currents on .C�/n.

THEOREM 2.12
A nondegenerate balanced weighted complex C is strongly extremal if and only if TC

is strongly extremal.

This follows from Fourier analysis for tropical currents developed in the next
section. A 0-dimensional weighted complex in R1 shows that the assumption of
nondegeneracy is necessary in Theorem 2.12, as the corresponding measure � on
Log�1.¹ptº/ can be chosen arbitrarily.

Remark 2.13
We note that there is an abundance of strongly extremal tropical varieties. For exam-
ple, the Bergman fan of any simple matroid is a strongly extremal tropical variety
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(see [24, Chapter III] for the Bergman fan and the extremality). Let TM be the trop-
ical current associated to the Bergman fan of a simple matroid M on the ground set
¹0; 1; : : : ; nº. IfM is representable over C, then by [1, Theorem 5.27] there are closed
subvarieties Zi � .C�/n of the ambient torus and positive real numbers �i such that

TM D lim
i!1

�i ŒZi �:

It would be interesting to know whether TM can be approximated as above when M
is not representable over C. (See [24, Section 4.3] for a related discussion.)

We end this section with a useful sufficient condition for the strong extremality
of C.

Definition 2.14
Let C be a p-dimensional weighted complex in Rn.
(1) C is locally extremal if, for every codimension 1 cell � in C, every proper

subset of®
u�=�

ˇ̌
� is a p-dimensional cell in C containing � with nonzero wC.�/

¯
is linearly independent in the normal space N.�/R.

(2) C is connected in codimension 1 if, for every pair of p-dimensional cells � 0,
� 00 in C with nonzero weights, there are codimension 1 cells �1; : : : ; �l and
p-dimensional cells �0; �1; : : : ; �l in C with nonzero weights such that

� 0 D �0 � �1 	 �1 � �2 	 �2 � � � � � �l 	 �l D �
00:

The following sufficient condition for the strong extremality of C was used as a
definition of strong extremality of C in [1].

PROPOSITION 2.15
If a balanced weighted complex C is locally extremal and connected in codimension
1, then it is strongly extremal.

Proof
Let C0 be a p-dimensional balanced weighted complex with jCj D jC0j. We show that
there is a complex number c such that C0 � c � C. Note that any refinement of C is
balanced, locally extremal, and connected in codimension 1. By replacing C and C0

with their refinements, we may assume that the set of p-dimensional cells in C with
nonzero weights is the set of p-dimensional cells in C0 with nonzero weights.

We may suppose that C is not equivalent to zero. Choose a p-dimensional cell � 0

in C with nonzero weight, and let c be the complex number satisfying
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wC0.�
0/D c �wC.�

0/:

We show that, for any other p-dimensional cell � 00 in C with nonzero weight,

wC0.�
00/D c �wC.�

00/:

Since C is connected in codimension 1, there are codimension 1 cells �1; : : : ; �l and
p-dimensional cells �0; �1; : : : ; �l in C with nonzero weights such that

� 0 D �0 � �1 	 �1 � �2 	 �2 � � � � � �l 	 �l D �
00:

By induction on the minimal distance l between � 0 and � 00 in C, we are reduced to
the case when l D 1, that is, when � 0 and � 00 have a common codimension 1 face � .
The balancing conditions for C and C0 at � giveX

���

�
wC0.�/� c �wC.�/

�
u�=� D 0;

where the sum is over all p-dimensional cells � in C with nonzero weight that con-
tain � . Since C is locally extremal, every proper subset of the vectors u�=� is linearly
independent, and hence

wC0.�
0/� c �wC.�

0/D 0 implies wC0.�
00/� c �wC.�

00/D 0:

3. Fourier analysis for tropical currents
We develop necessary Fourier analysis on tori for proofs of Theorems 2.9 and 2.12.

3.1
Let N be a finitely generated free abelian group, and let M be the dual group
HomZ.N;Z/. The one-parameter subgroup corresponding to u 2N is the homomor-
phism

�u W S1 �! SN ; z 7�! z˝ u:

The character corresponding to m 2M is the homomorphism

	m W SN �! S1; z˝ u 7�! zhu;mi;

where hu;mi denotes the dual pairing between elements of N and M .
We orient the unit circle S1 as the outer boundary of the complex manifold D�,

the punctured unit disk in C�. This makes each one-parameter subgroup of SN a 1-
dimensional current on SN . The pairing between �u and a smooth 1-form w is given
by
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h�u;wi WD

Z
S1
.�u/�w:

We write d
 for the invariant 1-form on S1 with
R
S1
d
 D 1 corresponding to the

chosen orientation. For m 2M , we define a smooth 1-form w.m/ on SN by

w.m/ WD .	m/� d
:

Then we have ˝
�u;w.m/

˛
D

Z
S1
.�u/�.	m/� d
 D hu;mi:

Taking linear combinations of 1-dimensional currents and smooth 1-forms, the above
gives the dual pairing between NC and the dual Lie algebra of SN . In particular, for
u1; u2 2N and any invariant 1-form w, we have

h�u1Cu2 ;wi D h�u1 ;wi C h�u2 ;wi:

Note however that, in general, �u1Cu2 ¤ �u1C�u2 as 1-dimensional currents on SN .
We write x�.w/ for the pullback of a smooth 1-form w along the multiplication

map

SN
x

SN ; x 2 SN :

Definition 3.1
Let u 2N , m 2M , and let � be a complex Borel measure on SN .
(1) The �-average of a smooth 1-form w on SN is the smooth 1-form

A.w; �/ WD

Z
x2SN

x�.w/d�.x/:

(2) The �-average of �u is the 1-dimensional current A.�u; �/ on SN defined by˝
A.�u; �/;w

˛
WD

Z
S1
.�u/�A.w; �/:

(3) The mth Fourier coefficient of � is the complex number

O�.m/ WD

Z
x2SN

	m d�.x/:

When � is the normalized Haar measure on SN , we omit � from the notation and
write

A.w/ WDA.w; �/; A.�u/ WDA.�u; �/:
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We record here basic properties of the above objects. Define

ık WD

´
1 if k D 0;

0 if k ¤ 0:

PROPOSITION 3.2
Let u be an element of N , and let m be an element of M .
(1) If w is an invariant 1-form on SN , then

A.	mw;�/D O�.m/ � 	mw:

(2) If w is an invariant 1-form on SN , then

h�u; 	mwi D ıhu;mi � h�
u;wi:

(3) If w is an invariant 1-form on SN , then˝
A.�u; �/;	mw

˛
D ıhu;mi � O�.m/ � h�

u;wi:

Proof
Since w is invariant and 	m is a homomorphism, for each x 2 SN , we have

x�.	mw/D x�.	m/ � x�.w/D 	m.x/	m �w:

Therefore,

A.	mw;�/D

Z
x2SN

x�.	mw/d�.x/D O�.m/ � 	mw:

This proves the first item.
The second item follows from the computation

h�u; 	mwi D

Z
S1
.�u/�.	mw/D

Z
S1
zhu;mi.�u/�w:

The last integral is zero unless hu;mi is zero, because .�u/�w is an invariant 1-form.
The third item is a combination of the first two:˝

A.�u; �/;	mw
˛
D
˝
�u;A.	mw;�/

˛
D ıhu;mi � O�.m/ � h�

u; 	mwi:

Consider the split exact sequence associated to a primitive element u of N :
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0 S1
�u

SN
qu

coker.�u/ 0:

Let � be a complex Borel measure on the cokernel of �u, let �1 be the normalized
Haar measure on S1, and let � be the pullback of the product measure ���1 under
a splitting isomorphism

SN ' coker.�u/� S1:

Each fiber of the submersion qu is a translation of the image of �u in SN , equipped
with the orientation induced from that of S1.

PROPOSITION 3.3
If u is a primitive element of N , then

A.�u; �/D

Z
x2coker.�u/

�
q�1u .x/

�
d�.x/:

In particular, if � is the normalized Haar measure on the cokernel of �u, then

A.�u/D

Z
x2coker.�u/

�
q�1u .x/

�
d�.x/:

Proof
By Fubini’s theorem, for any smooth 1-form w on SN ' coker.�u/� S1,˝

A.�u; �/;w
˛
D

Z
x

Z
y

�Z
S1
.�u/�x�y�w

�
d�.x/d�1.y/

D

Z
x

�Z
S1
.�u/�x�w

�
d�.x/ �

Z
y

d�1.y/

D

Z
x

�Z
q�1u .x/

w
�
d�.x/:

This shows the equality between 1-dimensional currents

A.�u; �/D

Z
x2coker.�u/

�
q�1u .x/

�
d�.x/:

If � is the normalized Haar measure on coker.�u/, then � is the normalized Haar
measure on SN , and the second statement follows.

In other words, when u is a primitive element of N , A.�u; �/ is the pullback of
the 0-dimensional current d� along the oriented submersion qu. In general,
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A.�u; �/Dmu

Z
x2coker.�u/

�
q�1u .x/

�
d�.x/;

where mu is the nonnegative integer satisfying uDmuu0 with u0 primitive.

3.2
Let us recall a definition of pullback of a current (see [12, Chapter 1, Section 2.15] for
details). Consider a submersion � WM !N , of complex manifolds M and N , with
respective complex dimensions m and n. Let ' be a differential form of degree k on
X 0, with L1loc coefficients, such that the restriction �jSupp' is proper. Then the form

��' WD

Z
z2F�1.y/

'.z/

is in Dk�2.m�n/.N /. Therefore, for a current T 2 D0
k�2.n�m/

.M/ the pullback of T
by � , ��T 2D0

k
.N / is obtained by

h��T; 'i D hT; ��'i:

Note that for an analytic cycle Z, ��ŒZ�D Œ��1Z� if � is a diffeomorphism.
Now let � be a rational polyhedron in Rn. Let �aff.�/ be the submersion associated

to aff.�/, and let �aff.�/ be the closed embedding in the diagram

Log�1
�
aff.�/

��aff.�/

�aff.�/

.C�/n

SN.�/

For u 2N.�/ and a complex Borel measure � on SN.�/, we define a current on .C�/n

by

A� .u; �/ WD 1Log�1.�/�
aff.�/
�

�
��aff.�/A.�

u; �/
�
:

In other words, A� .u; �/ is the trivial extension of the pullback of the �-average of �u

along the oriented submersion �� . When � is the normalized Haar measure on SN.�/,
we write

A� .u/ WDA� .u; �/:

For any nonzero u, the support of A� .u; �/ satisfies



2772 BABAEE and HUHˇ̌
A� .u; �/

ˇ̌
�
ˇ̌
A� .u/

ˇ̌
D Log�1.�/� .C�/n:

PROPOSITION 3.4
For any u1; u2 2N.�/,

A� .u1C u2/DA� .u1/CA� .u2/:

Proof
Since ��� is linear, it is enough to check that A is linear. Fourier coefficients of the
normalized Haar measure � on SN.�/ are

O�.m/D

´
1 if mD 0;

0 if m¤ 0:

Therefore, by Proposition 3.2, for any character 	m and invariant 1-form w on SN.�/,

˝
A.�u1Cu2/;	mw

˛
D

´
h�u1 ;wi C h�u2 ;wi if mD 0;

0 if m¤ 0;

and

˝
A.�u1/;	mw

˛
C
˝
A.�u2/;	mw

˛
D

´
h�u1 ;wi C h�u2 ;wi if mD 0;

0 if m¤ 0:

The Stone–Weierstrass theorem shows that any smooth 1-form on SN.�/ can be uni-
formly approximated by linear combinations of 1-forms of the form 	mw with w
invariant, and hence the above implies that

A.�u1Cu2/DA.�u1/CA.�u2/:

We note that the linear operators A� and A are injective. By Proposition 3.2, for
any element m in the dual group M.�/ WDN.�/_,˝

A.�u/;w.m/
˛
D
˝
�u;w.m/

˛
D hu;mi:

It follows that A� .u/D 0 if and only if A.�u/D 0 if and only if uD 0.

3.3
Let � be a codimension 1 face of a p-dimensional rational polyhedron � in Rn. Cor-
responding to each point x 2 SN.�/, there is a commutative diagram of maps between
smooth manifolds
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l�1�;x.�
ı/

l�1�;x.�
ı/ ��1aff.�/.x/

l�;x

Log�1.�ı/

��

Log�1
�
aff.�/

�
�aff.�/

laff.�/

aff.�/

S1
�
u�=�

SN.�/

q�=�

SN.�/

The maps �� , �aff.�/ are submersions with oriented fibers, the maps l�;x , laff.�/ are
restrictions of the logarithm map, and all unlabeled maps are inclusions between sub-
sets of .C�/n. The dimensions of the above manifolds are depicted in the following
diagram:

2p

2p � 1 2p

nC p � 1 nC p p

1 n� pC 1 n� p

The bottom row is a split exact sequence of Lie groups, and there is a canonical
isomorphism

SN.�/ ' coker.�u�=� /:

Each fiber of the submersion q�=� has the orientation induced from that of S1.

LEMMA 3.5
We have the following equality between currents on Log�1.�ı/:�

l�1�;x.�
ı/
�
D ���

�
q�1�=� .x/

�
:
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Proof
By construction, the top square in the diagram is Cartesian:

l�1�;x.�
ı/D Log�1.�ı/\ ��1aff.�/.x/:

This equality, together with the commutativity of the two squares, shows that

l�1�;x.�
ı/D ��1�

�
q�1�=� .x/

�
:

The left-hand side is oriented as a boundary of the complex manifold l�1�;x.�
ı/, and

the circle q�1
�=�
.x/ is oriented as a translate of the one-parameter subgroup �u�;� . The

canonical orientation on fibers of �� gives the orientation on the right-hand side.
We show that the two orientations agree. We do this explicitly after three reduc-

tion steps.
(1) It is enough to show this locally around any one point in l�1�;x.�

ı/. Therefore,
we may assume that � D aff.�/.

(2) By translation, we may assume that the chosen point is the identity element of
the ambient torus.

(3) By monomial change of coordinates, we may assume that

� D span.e2; : : : ; ep/; � D cone.e1/C �:

Here e1; : : : ; en is the standard basis of Zn. Recall that the punctured unit disk D�

maps to the positive real line R>0 under the logarithm map. Under the above assump-
tions, the diagram reads

D
� � .C�/p�1 � ¹1º

S1 � .C�/p�1 � ¹1º C
� � .C�/p�1 � ¹1º

S1 � .C�/p�1 � .S1/n�p C
� � .C�/p�1 � .S1/n�p R�R

p�1 � ¹0º

S1 � ¹1º � ¹1º S1 � ¹1º � .S1/n�p ¹1º � ¹1º � .S1/n�p

From this diagram, we see that the orientation on l�1�;x.�
ı/ as a boundary of l�1�;x.�

ı/

agrees with the product of the orientation on S1 and the canonical orientation on
fibers of �� .
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It follows that there is an equality between the trivial extensions to .C�/n�
l�1�;x.�/

�
D
�
��1�

�
q�1
�=�
.x/
��
:

3.4
Let � be a p-dimensional rational polyhedron in Rn, and let �� be a complex Borel
measure on SN.�/. For each codimension 1 face � of � , consider the split exact
sequence

0 S1
�
u�=�

SN.�/

q�=�

SN.�/ 0:

Let ��=� be the pullback of the product measure �� � �1 under a splitting isomor-
phism

SN.�/ ' SN.�/ � S
1:

PROPOSITION 3.6
We have

dT� .�� /D�
X
���

A� .u�=� ; ��=� /;

where the sum is over all codimension 1 faces � of � . In particular,

dT� D�
X
���

A� .u�=� /:

Proof
We start from the geometric representation of the boundary in Proposition 2.5. We
have

dT� .�� /D�
X
���

�Z
x2SN.�/

�
l�1�;x.�/

�
d�� .x/

�
:

Lemma 3.5 and Proposition 3.3 together give

dT� .�� /D�
X
���

�Z
x2SN.�/

�
��1�

�
q�1
�=�
.x/
��
d�� .x/

�
D�

X
���

A� .u�=� ; ��=� /:

If �� is the normalized Haar measure on SN.�/, then ��=� is the normalized Haar
measure on SN.�/ for all � 	 � , and the second statement follows.
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Let � and � be as above, and consider the dual exact sequences

0 Z
u�=�

N.�/ N.�/ 0

and

0 M.�/ M.�/

u_
�=�

Z_ 0:

The latter exact sequence shows that an element m of M.�/ is in M.�/ if and only if

hu�=� ;mi D 0:

When m satisfies this condition, the mth Fourier coefficients of both ��=� and �� are
defined.

PROPOSITION 3.7
If an element m of M.�/ is in M.�/, then O��=� .m/D O�� .m/.

Proof
Since m 2M.�/, the character 	m is constant along each fiber of q�=� . Therefore, by
Fubini’s theorem,

O��=� .m/D

Z
x

	m d�.x/ �

Z
y

d�1.y/D O�� .m/:

The following formula for the boundary of TC directly implies Theorem 2.9.

THEOREM 3.8
For any p-dimensional weighted complex C in Rn,

dTC D�
X
�

A�

�X
���

wC.�/u�=�

�
;

where the second sum is over all p-dimensional cells � containing � .

Proof
By Proposition 3.6, we have

dTC D�
X
�

X
���

wC.�/A� .u�=� /:

Changing the order of summation and applying Proposition 3.4 gives

dTC D�
X
�

A�

�X
���

wC.�/u�=�

�
:
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3.5
Let P be a p-dimensional locally finite rational polyhedral complex in Rn. We choose
a complex Borel measure �� on SN.�/ for each p-dimensional cell � of P, and we
define a current

T WD
X
�

T� .�� /;

where the sum is over all p-dimensional cells � in P. The support of T satisfies

jTj � Log�1jPj:

In fact, any .p;p/-dimensional closed current with measure coefficients and sup-
port in Log�1jPj is equal to T for some choices of complex Borel measures �� (see
Lemma 3.12). For each � and its codimension 1 face � , there are inclusion maps

M.�/ M.�/ .Zn/_;

dual to the quotient maps

Zn N.�/ N.�/:

Let m be an element of .Zn/_. For each p-dimensional cell � in P, we set

wT.�;m/ WD

´
O�� .m/ if m 2M.�/;

0 if m …M.�/:

This defines p-dimensional weighted complexes CT.m/ in Rn satisfyingˇ̌
CT.m/

ˇ̌
� jPj:

THEOREM 3.9
The current T is closed if and only if CT.m/ is balanced for all m 2 .Zn/_.

When all the measures �� are invariant, CT.m/ is zero for all nonzero m, and
Theorem 3.9 is equivalent to Theorem 2.9. The general case of Theorem 3.9 will be
used in the proof of Theorem 2.12.

Proof
Let � be a codimension 1 cell in P, and let m be an element of .Zn/_. If m …M.�/,
then for all p-dimensional cells � in P containing � ,

wT.�;m/D 0;
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and CT.m/ trivially satisfies the balancing condition at � . It remains to show that T is
closed if and only if CT.m/ satisfies the balancing condition at � wheneverm 2M.�/.
By Proposition 3.6, we have the expression

dTD�
X
�

X
���

A� .u�=� ; ��=� /;

where the second sum is over all p-dimensional cells � containing � . Therefore, T is
closed if and only if, for each codimension 1 cell � of P,X

���

A� .u�=� ; ��=� /D 0:

This happens if and only if, for each codimension 1 cell � of P,X
���

��� A.�
u�=� ; ��=� /D 0:

Since each ��� is an injective linear map, the remark following Proposition 3.4 implies
that this condition is equivalent toX

���

A.�u�=� ; ��=� /D 0; for each �:

By the Stone–Weierstrass theorem, any smooth 1-form on SN.�/ can be uniformly
approximated by linear combinations of 1-forms of the form 	mw, where 	m is a
character and w is an invariant 1-form on SN.�/, and hence the above condition holds
if and only if X

���

˝
A.�u�=� ; ��=� /;	

mw
˛
D 0 for each �;

for all characters 	m and all invariant 1-forms w on SN.�/. Using Propositions 3.2
and 3.7, the equation reads X

���

wT.�;m/h�
u�=� ;wi D 0:

Finally, the dual pairing between N.�/C and M.�/C shows that the condition holds if
and only if the balancing conditionX

���

wT.�;m/u�=� D 0

is satisfied for all � and all elements m 2M.�/.
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3.6
Theorem 2.9 can be used to prove one direction of Theorem 2.12. If C0 is a balanced
weighted complex which has the same dimension and support as C, then TC0 is a
closed current with measure coefficients which has the same dimension and support
as TC. Therefore, if TC is strongly extremal, then there is a constant c such that

TC0 D c � TC D Tc�C:

This implies that

C0 � c � C;

and hence C is strongly extremal. We prove the other direction after three lemmas.

LEMMA 3.10
A p-dimensional weighted complex C in Rn is nondegenerate if and only if\

�

M.�/R D ¹0º;

where the intersection is over all p-dimensional cells in C.

Proof
The nondegeneracy of C is equivalent to the exactness ofX

�

H� �!Rn �! 0;

which is in turn equivalent to the exactness of

0�! .Rn/_ �!
M
�

H_� ;

where the sums are over all p-dimensional cells in C. The kernel of the latter map is
the intersection of M.�/R in the statement of the lemma.

LEMMA 3.11
If the support of a balanced weighted complex C1 is properly contained in the support
of a strongly extremal balanced weighted complex C2 of the same dimension, then
C1 � 0.

Proof
The local finiteness of C1, C2 implies that there are only countably many cells in C1,
C2. Therefore, there is a nonzero complex number c1 such that
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c1¹C1º C ¹C2º

ˇ̌
D jC2j:

By the strong extremality of C2, there is a complex number c2 with

c1¹C1º C ¹C2º D c2¹C2º:

Since the support of C1 is properly contained in the support of C2, the number c2
should be 1, and hence all the weights of C1 are zero.

LEMMA 3.12
Let P be a p-dimensional locally finite rational polyhedral complex in Rn. If the
support of a .p;p/-dimensional current T with measure coefficients on .C�/n satisfies

jTj � Log�1jPj;

then there are complex Borel measures �� on SN.�/ such that

TD
X
�

T� .�� /;

where the sum is over all p-dimensional cells � in P.

Proof
The second theorem on support (see [12, Section III.2]) implies that, for each p-
dimensional cell � in P, there is a complex Borel measure �� on SN.�/ such that

TjLog�1.�ı/ D �
�
� .d�� /:

The trivial extension of the right-hand side to .C�/n is by definition T� .�� /, and
hence ˇ̌̌

T �
X
�

T� .�� /
ˇ̌̌
�
[
�

Log�1j� j;

where the union is over all .p � 1/-dimensional cells in P. Note that each Log�1j� j
is contained in the closed submanifold

Log�1
�
aff.�/

�
� .C�/n:

Since this submanifold has Cauchy–Riemann dimension p � 1, the first theorem on
support (see [12, Section III.2]) implies that

T �
X
�

T� .�� /D 0:
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End of proof of Theorem 2.12
Suppose that C is nondegenerate and strongly extremal, and let T be a closed cur-
rent with measure coefficients which has the same dimension and support as TC.
Lemma 3.12 shows that there are complex Borel measures �� on SN.�/ such that

TD
X
�

T� .�� /;

where the sum is over all p-dimensional cells � in C. For each m 2 .Zn/_, we
construct the balanced weighted complexes CT.m/ using Theorem 3.9. Since C is
strongly extremal, there are complex numbers c.m/ such that

CT.m/D c.m/ � C; m 2 .Zn/_:

Since C is nondegenerate, Lemma 3.10 shows that the support of CT.m/ is properly
contained in the support of C for all nonzero m 2 .Zn/_. Therefore

CT.m/D 0; m¤ 0:

In other words, the Fourier coefficient O�� .m/ is zero for all p-dimensional cells � in
C and all nonzero m 2 .Zn/_. The measures �� are determined by their Fourier coef-
ficients, and hence each �� is the invariant measure on SN.�/ with the normalizationZ

x2SN.�/

d�� .x/D c.0/:

Therefore TD c.0/ � TC, and the current TC is strongly extremal.

4. Tropical currents on toric varieties

4.1
LetX be an n-dimensional smooth projective complex toric variety containing .C�/n,
let † be the fan of X , and let p and q be nonnegative integers satisfying pC q D n.
Since X is smooth, Xn.C�/n is a simple normal crossing divisor, and the orbit clo-
sures are intersections of its components. A cohomology class in X gives a homo-
morphism from the homology group of complementary dimension to Z, defining the
Kronecker duality homomorphism

DX WH
2q.X;Z/�!HomZ

�
H2q.X;Z/;Z

�
; c 7�!

�
a 7�! deg.c \ a/

�
:

The homomorphism DX is, in fact, an isomorphism. Since the homology group is
generated by the classes of q-dimensional torus orbit closures, the duality identi-
fies cohomology classes with certain Z-valued functions on the set of p-dimensional



2782 BABAEE and HUH

cones in †, that is, with certain integral weights assigned to the p-dimensional cones
in †. The relation between homology classes of q-dimensional torus orbit closures of
X translates to the balancing condition on the integral weights on the p-dimensional
cones in † (see [19, Theorem 2.1]).

THEOREM 4.1
The Kronecker duality gives isomorphisms between abelian groups

H 2q.X;Z/'Hom
�
H2q.X;Z/;Z

�
' ¹p-dimensional balanced integral weights on †º:

Therefore, by the Hodge decomposition theorem, cohomology groupH i .X;�
j
X /

vanishes when i ¤ j , and there is an induced isomorphism between complex vector
spaces

DX;C WH
q;q.X/�! ¹p-dimensional balanced weights on †º:

In other words, the Kronecker duality identifies elements of H q;q.X/ with p-
dimensional balanced weighted complexes in †. Explicitly, for a smooth closed form
' of degree .q; q/,

DX;C W ¹'º 7�!
�
 7�!

Z
V.�/

'
�
;

where V./ is the q-dimensional torus orbit closure in X corresponding to a p-
dimensional cone  in †.

Let w0 be the smooth positive .1; 1/-form on X corresponding to a fixed torus
equivariant projective embedding

� WX �! PN :

The trace measure of a .p;p/-dimensional positive current T on X is the positive
Borel measure

tr.T/D tr.T;w0/ WD
1

pŠ
T ^w

p
0 :

The trace measure of a positive current on an open subset of X is defined in the same
way using the restriction of w0.

PROPOSITION 4.2
If C is a p-dimensional positive weighted complex in Rn with finitely many cells, then
the trace measure of the positive current TC is finite.
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Proof
Let � be a p-dimensional rational polyhedron in Rn, and recall that each fiber ��1� .x/

is an open subset of the p-dimensional closed subvariety ��1aff.�/.x/ � .C
�/n. By

Wirtinger’s theorem (see [20, Chapter 1]), the normalized volume of ��1aff.�/.x/ with
respect to w0 is the degree of the closure

d� WD deg
�
��1aff.�/.x/

X
� PN

�
:

This integer d� is independent of x 2 SN.�/, because the projective embedding � is
equivariant and fibers of �aff.�/ are translates of each other under the action of .S1/n.
It follows that tr.T� /
 d� , and hence

tr.TC/

X
�

wC.�/d� ;

where the sum is over all p-dimensional cells � in C.

Let C be a p-dimensional weighted complex in Rn with finitely many cells.
Proposition 4.2 shows that X is covered by coordinate charts .�; z/ such that

TCj	\.C�/n D
X

jI jDjJ jDk

�IJ dzI ^ d NzJ ;

where �IJ are complex Borel measures on �\ .C�/n. It follows that the current TC

admits the trivial extension, the current TC on X defined by

TCj	 D
X

jI jDjJ jDk

�IJ dzI ^ d NzJ ;

where �IJ are complex Borel measures on � given by �IJ .�/D �IJ .�
T
.C�/n/.

LEMMA 4.3
If C is a balanced weighted complex with finitely many cells, then there are complex
numbers c1; : : : ; cl and positive balanced weighted complexes C1; : : : ;Cl with finitely
many cells such that

TC D

lX
iD1

ciTCi :

Proof
Let Cp be the set of p-dimensional cells in C, and consider the complex vector space

W WD ¹w W Cp �!C jw satisfies the balancing conditionº:
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Since the balancing condition is defined over the real numbers, W is spanned by
elements of the form w W Cp �! R. Therefore, it is enough to show the following
statement. If C is a balanced weighted complex with real weights and finitely many
cells, then TC can be written as a difference

TC D TA � TB;

where A and B are positive balanced weighted complexes with finitely many cells.
We construct the weighted complexes A and B from C as follows. Let jAj be the

union

jAj WD
[
�2Cp

aff.�/;

and note that there is a refinement of C that extends to a finite rational polyhedral
subdivision of jAj. Choose any such refinement C0 of C and a subdivision A of jAj.
For each p-dimensional cell  in A, we set

wA./ WD max
�2Cp

ˇ̌
wC.�/

ˇ̌
; wB./ WDwA./�wC0./:

This makes A and B positive weighted complexes satisfying

TC D TA � TB:

It is easy to see that A is balanced, and B is balanced because A and C are balanced.

PROPOSITION 4.4
If C is a balanced weighted complex with finitely many cells, then the trivial extension
TC is a closed current on X .

Proof
We use Lemma 4.3 to express TC as a linear combination

TC D

lX
iD1

ciTCi ;

where ci are complex numbers and Ci are positive balanced weighted complexes with
finitely many cells. By taking the trivial extension, we have

TC D

lX
iD1

ciTCi :
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By Theorem 2.9, each TCi is a positive closed current on the open subset .C�/n �X .
Since each Ci has finitely many cells, Proposition 4.2 shows that Skoda’s extension
theorem (see [12, Section III.2]) applies to the positive closed current TCi . It follows
that dTCi D 0, and hence

dTC D

lX
iD1

cidTCi D 0:

Any .p;p/-dimensional closed current T on X defines a linear functional on
Hp;p.X/:

T 7�!
�
 7�! hT; i

�
:

Composing the above map with the Poincaré–Serre duality Hp;p.X/_ 'H q;q.X/,
we have

T 7�! ¹Tº 2H q;q.X/:

The element ¹Tº is the cohomology class of T. In particular, a p-dimensional balanced
weighted complex C with finitely many cells defines a cohomology class ¹TCº, which
we may view as a p-dimensional balanced weighted complex via Theorem 4.1. We
compare these two balanced weighted complexes in Theorem 4.7.

4.2
Let C be a p-dimensional balanced weighted complex in Rn with finitely many cells.
The recession cone of a polyhedron � is the convex polyhedral cone

rec.�/D ¹b 2Rn j � C b � �º �H� :

If � is rational, then rec.�/ is rational, and if � is a cone, then � D rec.�/.

Definition 4.5
We say that C is compatible with † if rec.�/ 2† for all � 2 C.

There is a subdivision of C that is compatible with a subdivision of † (see [4]).

Definition 4.6
For each p-dimensional cone  in †, we define

wrec.C/./ WD
X
�

wC.�/;

where the sum is over all p-dimensional cells � in C whose recession cone is  .
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This defines a p-dimensional weighted complex rec.C;†/, the recession of C

in †. When C is compatible with †, we write

rec.C/ WD rec.C;†/:

As suggested by the notation, the recession of C does not depend on † when C is
compatible with†. More precisely, if C1 � C2 and if Ci is compatible with a complete
fan †i for i D 1; 2, then

rec.C1;†1/� rec.C2;†2/:

THEOREM 4.7
If C is a p-dimensional tropical variety compatible with †, then

¹TCº D rec.C/ 2H q;q.X/:

In particular, if all polyhedrons in C are cones in †, then

¹TCº D C 2H q;q.X/:

As a consequence, rec.C/ is a balanced complex, since it represents a cohomol-
ogy class.

The remainder of this section is devoted to the proof of Theorem 4.7.

4.3
Let � be a p-dimensional rational polyhedron in Rn. If rec.�/ 2†, we consider the
corresponding torus-invariant affine open subset

Urec.�/ WD Spec
�
C
�
rec.�/_ \Zn

��
�X:

We write p0 for the dimension of the recession cone of � , and we write K� for the
span of the recession cone of � :

p0 WD dim
�
rec.�/

�
; K� WD span

�
rec.�/

�
'Rp

0

:

There are morphisms between fans�
rec.�/�K�

�
�!

�
rec.�/�H�

�
�!

�
rec.�/�Rn

�
:

Since X is smooth, rec.�/ 2 † implies that rec.�/ is unimodular, and the induced
map between affine toric varieties fits into the commutative diagram
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TK�\Zn
Urec.�/

'1�

TH�\Zn
Urec.�/

'2�

Urec.�/

'3�

Cp
0

Cp
0

� .C�/p�p
0

Cp
0

� .C�/n�p
0

where '1� , '2� , '3� are isomorphisms between toric varieties and the horizontal maps
are equivariant closed embeddings. We write zrec.�/ for the distinguished point of
Urec.�/ corresponding to the semigroup homomorphism

rec.�/_ \Zn �!C; m 7�!

´
1 if m 2 �?;

0 if m … �?:

The isotropy subgroup of the distinguished point is TK�\Zn � .C
�/n, and we may

identify TN.rec.�// with the closed torus orbit of Urec.�/ by the map

TN.rec.�// �! Urec.�/; t 7�! t � zrec.�/:

Under the above commutative diagram,

zrec.�/ zrec.�/ zrec.�/

0
Cp
0 0

Cp
0 � 1.C�/p�p0 0

Cp
0 � 1.C�/n�p0

The following observation forms the basis of the proof of Theorem 4.7.

LEMMA 4.8
If rec.�/ 2†, then

Log�1.�/
X
� Urec.�/:

Proof

Note that the isomorphism '1� restricts to the homeomorphism ��1rec.�/.1/
Urec.�/

'D
p0

,

where D is the closed unit disk in C. Write ˆ for the action of .S1/n on Urec.�/, and
observe that

ˆ
�
.S1/n � ��1rec.�/.1/

�
D

[
x2SN.rec.�//

��1rec.�/.x/D Log�1
�
rec.�/ı

�
:

This shows that
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ˆ
�
.S1/n � ��1rec.�/.1/

Urec.�/�
Dˆ

�
.S1/n � ��1rec.�/.1/

�Urec.�/

D Log�1
�
rec.�/ı

�Urec.�/
;

where the compactness of ��1rec.�/.1/
Urec.�/

is used in the first equality. Since the loga-
rithm map is a submersion, the above implies that

ˆ
�
.S1/n � ��1rec.�/.1/

Urec.�/�
D Log�1

�
rec.�/

�Urec.�/
:

Therefore, the set on the right-hand side is compact. We use this to prove that

Log�1.�/
Urec.�/

is compact, and hence

Log�1.�/
X
D Log�1.�/

Urec.�/
� Urec.�/:

Let � be a bounded polyhedron in the Minkowski–Weyl decomposition � D �C
rec.�/. Write ‰ for the action of Rn on Urec.�/, and observe that

‰
�
�� Log�1

�
rec.�/

��
D
[
b2


Log�1
�
bC rec.�/

�
D Log�1.�/:

This shows that

‰
�
�� Log�1

�
rec.�/

�Urec.�/�
D‰

�
�� Log�1

�
rec.�/

��Urec.�/

D Log�1.�/
Urec.�/

;

where the compactness of Log�1.rec.�//
Urec.�/

is used in the first equality. Therefore,
the set on the right-hand side is compact.

Let C be a p-dimensional balanced weighted complex in Rn with finitely many
cells.

PROPOSITION 4.9
If C is nondegenerate, strongly extremal, and compatible with†, then TC is a strongly
extremal closed current on X .

Proof
WriteD� for the torus-invariant prime divisor in X corresponding to a 1-dimensional
cone � in †. We note that, for any p-dimensional rational polyhedron � in C, the
subset

D� \ Log�1
�
aff.�/

�Urec.�/
�Urec.�/
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is either empty or a closed submanifold of Cauchy–Riemann dimension p � 1. The
subset is nonempty if and only if rec.�/ contains �, and in this case, for any b 2
aff.�/, we have the commutative diagram

D� \ Log�1
�
aff.�/

�Urec.�/

'

Urec.�/

'3�

Cp
0�1 � .C�/p�p

0

� .S1/n�p
e�b

Cp
0

� .C�/n�p
0

Let T be a closed current on X with measure coefficients which has the same
dimension and support as TC. By Theorem 2.12, there is a complex number c such
that

Tj.C�/n � c � TC D 0:

This implies that

jT � c � TCj �
[
�;�

�
D� \ Log�1.�/

X�
;

where the union is over all pairs of 1-dimensional cones � in † and p-dimensional
cells � in C. By Lemma 4.8, we have

jT � c � TCj �
[
�;�

�
D� \ Log�1

�
aff.�/

�Urec.�/�
:

The above commutative diagram shows that the right-hand side is a finite union of
submanifolds of Cauchy–Riemann dimension p � 1:[

�;�

�
D� \ Log�1

�
aff.�/

�Urec.�/�
'
[
�;�

�
Cp
0�1 � .C�/p�p

0

� .S1/n�p
�
:

By the first theorem on support (see [12, Section III.2]), this implies that

T � c � TC D 0:

4.4
Let D1; : : : ;Dp be the torus-invariant prime divisors in X corresponding to distinct
1-dimensional cones �1; : : : ; �p in †. We fix a positive integer l 
 p.

LEMMA 4.10
Let � be a p-dimensional rational polyhedron in Rn, and let x 2 SN.�/, b 2 aff.�/.
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(1) If rec.�/ 2†, then D1; : : : ;Dl intersect transversally with the smooth subva-
riety

��1aff.�/.x/
Urec.�/

� Urec.�/;

and this intersection is nonempty if and only if rec.�/ contains �1; : : : ; �l .
(2) If rec.�/ 2† and rec.�/ contains �1; : : : ; �p , then

D1 \ � � � \Dp \ �
�1
aff.�/.x/

Urec.�/
D ¹e�b � x � zrec.�/º:

(3) If rec.�/ 2† and rec.�/ contains �1; : : : ; �p , then the above intersection point
is contained in the relative interior of

��1� .x/
Urec.�/

� ��1aff.�/.x/
Urec.�/

:

Proof
It is enough to prove the assertions when x is the identity and � contains the origin.
In this case, we have aff.�/ D H� and rec.�/ � � . If rec.�/ 2 †, then rec.�/ is
unimodular, and there is a commutative diagram

��1aff.�/.1/
Urec.�/

'2�

Urec.�/

'3�

Cp
0

� .C�/p�p
0

Cp
0

� .C�/n�p
0

If rec.�/ does not contain �i , then Di is disjoint from Urec.�/. If rec.�/ contains
�1; : : : ; �l , then

D1 \ � � � \Dl \ �
�1
aff.�/.x/

Urec.�/
'Cp

0�l � .C�/p�p
0

:

If furthermore l D p, thenN.�/DN.rec.�//, and the above intersection is the single
point

¹zrec.�/º ' ¹0Cp � 1.C�/n�pº:

This point is contained in the relative interior of�
��1rec.�/.1/

Urec.�/
� ��1aff.�/.1/

Urec.�/�
' .D

p
�Cp/:

Since rec.�/� � , the point is contained in the relative interior of

��1� .1/
Urec.�/

� ��1aff.�/.1/
Urec.�/

:
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The wedge product between positive closed currents will play an important role in
the proof of Theorem 4.7. We briefly review the definition here, referring the reader to
[12] and [15] for details. Write d D @C @ for the usual decomposition of the exterior
derivative on X , and set

d c WD
1

2�i
.@� @/:

Let u be a plurisubharmonic function on an open subsetU �X , and let T be a positive
closed current on U . Since T has measure coefficients, uT is a well-defined current
on U if u is locally integrable with respect to tr.T/. In this case, we define

dd c.u/^ T WD dd c.uT/:

The wedge product is a positive closed current on U , and it vanishes identically when
u is pluriharmonic.

Let D be a positive closed current on U of degree .1; 1/. We define D ^ T as
above, using open subsets Ui � U covering U and plurisubharmonic functions ui on
Ui satisfying

DjUi D dd
cui :

The wedge product does not depend on the choice of the open covering and local
potentials, and it extends linearly to the case when D is almost positive, that is, when
D can be written as the sum of a positive closed current and a smooth current. If
D1; : : : ;Dl are almost positive closed currents on U of degree .1; 1/ satisfying the
integrability condition, we define

D1 ^D2 ^ � � � ^Dl ^ T WDD1 ^
�
D2 ^ � � � ^ .Dl ^ T/

�
:

Let C be a p-dimensional tropical variety compatible with †, and let � be a ray
of †. For each p-dimensional cell � of C whose recession cone contains �, we set

wstar.�;C/.�/DwC.�/;

where � is the image of � in the quotient space N.�/R. This defines a .p � 1/-
dimensional tropical variety

star.�;C/�N.�/R;

whose .p � 1/-dimensional cones correspond to p-dimensional cones of C whose
recession cone contains �. For any � as above, the facets of � are the images of the
facets of � whose recession cone contains �, and therefore the balancing condition for
star.�;C/ follows from the balancing condition for C. The notation “star” is motivated
by the important special case when C D rec.C/.
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PROPOSITION 4.11
If D� is the torus-invariant divisor of X corresponding to a ray � of †, then

D� ^ TC D Tstar.�;C/:

Proposition 4.11 leads to an explicit description of the 0-dimensional current
ŒD�1 �^� � �^ ŒD�p �^TC for distinct torus-invariant divisorsD�i . For a p-dimensional
rational polyhedron � compatible with †, we let �� be the normalized Haar measure
on SN.�/. If rec.�/ is p-dimensional, we define a closed embedding

�� W SN.�/ �!X; t 7�! e�b � t � zrec.�/; b 2 aff.�/;

which does not depend on the choice of b. Repeated application of Proposition 4.11
gives

ŒD�1 �^ � � � ^ ŒD�p �^ TC D
X
�

wC.�/���.d�� /;

where the sum is over all p-dimensional cells � in C such that rec.�/ D cone.�1;
: : : ; �p/.

Proof
We first note that the support of D� ^ TC is contained in D�. Indeed, we have

dd c
�
logjf jTCjU

�
D dd c

�
logjf j

�
^ TCjU D 0^ TCjU D 0

for any nonvanishing holomorphic function f on an open subset U �X .
Let � be a p-dimensional cone of C. If the recession cone of � contains �, then

there is a natural isomorphism

SN.�/ ' SN.�/:

Using the above identification, one can check in toric local coordinates for Urec.�/ in
Section 4.3 that, for any x in SN.�/,

D� \ ��1� .x/D

´
��1� .x/ if the recession cone of � contains �;

∅ if the recession cone of � does not contain �:

Suppose that the recession cone of � contains �. If f� is a defining equation ofD� on
an open subset U �X , an application of the Poincaré–Lelong formula shows that

dd c
�
logjf�j

�
��1� .x/

�
jU
�
D
�
��1� .x/

�
jU CR� .x/;

where R� .x/ is a current whose support is contained in the boundary of ��1� .x/. It
follows that
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dd c
�
logjf�jT� jU

�
D T� jU CR� ;

where R� is a current whose support is contained in the boundary of Log�1.�/.
Therefore, the support of the closed current

D� ^ TC � Tstar.�;C/

is contained in the intersection of the divisor D� and the piecewise smooth manifoldS
� @Log�1.�/, where the union is over all p-dimensional cells of C whose reces-

sion contains �. The intersection in question is the union of closed submanifolds of
Cauchy–Riemann dimension p � 2, and hence

D� ^ TC � Tstar.�;C/ D 0:

We illustrate the argument in coordinates in the representative case when � is a
cone containing �. Consider the toric coordinate system on U� with

U� 'C�Cp�1 � .C�/n�p and D�jU� ' 0�C
p�1 � .C�/n�p:

Writing D for the closed unit disk in C, we have

��1� .x/'D
p
� x and Log�1.�/'D

p
� .S1/n�p:

The boundary of the latter has p components of the form

D� � � � �D� S1 �D� � � � �D� .S1/n�p;

whose intersection with D� has Cauchy–Riemann dimension p � 2. Therefore, the
intersection cannot support any normal closed current of dimension .p � 1;p � 1/.

4.5
We begin the proof of Theorem 4.7. Fix a positive integer l 
 p, and let

�1; : : : ; �p WD distinct 1-dimensional cones in †;

D1; : : : ;Dp WD torus-invariant divisors of �1; : : : ; �p;

L1; : : : ;Lp WD Hermitian line bundles on X corresponding to D1; : : : ;Dp;

w1; : : : ;wp WD Chern forms of the line bundles L1; : : : ;Lp:

If si is a holomorphic section of OX .Di / that defines Di , then the Poincaré–Lelong
formula says that

dd c log jsi j D ŒDi ��wi :
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PROPOSITION 4.12
If C is a p-dimensional tropical variety compatible with †, then®

ŒD1�^ � � � ^ ŒDl �^ TC

¯
D ¹w1º ^ � � � ^ ¹wlº ^ ¹TCº:

Proof
The statement follows from repeated application of the following general fact. Let T
be a positive closed current on X , and let D be a positive closed .1; 1/-current on X .
We write

DDwC dd cu;

where w is a smooth .1; 1/-form and u is an almost plurisubharmonic function, a
function that is locally equal to the sum of a smooth function and a plurisubharmonic
function. The general fact to be applied is as follows:

If u is locally integrable with respect to tr.T/; then ¹D^ Tº D ¹wº ^ ¹Tº:

To see this, we use Demailly’s regularization theorem (see [10, Theorem 1.1]) to
construct a sequence of smooth functions uj decreasing to u and a smooth positive
closed .1; 1/-form  such that

 C dd cuj � 0:

Choose open subsets Ui � X covering X and plurisubharmonic functions 'i on Ui
such that

 jUi D dd
c'i :

Then 'i C .uj jUi / is a sequence of plurisubharmonic functions on Ui decreasing to
'i C .ujUi /. By the monotone convergence theorem for wedge products (see [12,
Theorem 3.7]), we have

lim
j!1

. C dd cuj /jUi ^ TjUi D . C dd
cu/jUi ^ TjUi :

Since X is compact, the open covering of X can be taken to be finite, and hence

lim
j!1

. C dd cuj /^ TD . C dd cu/^ T:

By continuity of the cohomology class assignment, this implies that

lim
j!1

®
.wC dd cuj /^ T

¯
D
®
.wC dd cu/^ T

¯
D ¹D^ Tº:

Since wC dd cuj is smooth and dd cuj is exact, the left-hand side is equal to

lim
j!1
¹wC dd cuj º ^ ¹Tº D ¹wº ^ ¹Tº:
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Proof of Theorem 4.7
Suppose that �1; : : : ; �p generates a p-dimensional cone  in †. Since X is smooth,
every p-dimensional cone of † is of this form. The torus orbit closure V./ � X
corresponding to  is the transversal intersection of D1; : : : ;Dp , and its fundamental
class is Poincaré dual to ¹w1º ^ � � � ^ ¹wpº. We show that

hTC;w1 ^ � � � ^wpi D

Z
X

w1 ^ � � � ^wp ^ TC Dwrec.C/./:

By Proposition 4.12, we haveZ
X

w1 ^ � � � ^wp ^ TC D

Z
X

ŒD1�^ � � � ŒDp�^ TC:

By Proposition 4.11, the right-hand side isZ
X

ŒD1�^ � � � ŒDp�^ TC D

Z
X

�X
�

wC.�/���.d�� /
�
D
X
�

wC.�/;

where the sum is over all p-dimensional cells � in C such that rec.�/D  . Note that
the sum is, by definition of the recession of C, the weight wrec.C/./. Since the above
computation is valid for each p-dimensional cone  in †, we have

¹TCº D rec.C/ 2H q;q.X/:

5. The strongly positive Hodge conjecture

5.1
This section is devoted to the construction of the following example.

THEOREM 5.1
There is a 4-dimensional smooth projective variety X and a .2; 2/-dimensional
strongly positive closed current T on X with the following properties.
(1) The cohomology class of T satisfies

¹Tº 2H 4.X;Z/\H 2;2.X;C/:

(2) The current T is not a weak limit of the form

lim
i!1

Ti ; Ti D
X
j

�ij ŒZij �;

where �ij are positive real numbers and Zij are irreducible surfaces in X .
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The above X and T have other notable properties: X is a toric variety, T is
strongly extremal, and ¹Tº generates an extremal ray of the nef cone of X (the dual of
the effective cone of complementary dimension with respect to the Poincaré pairing).
It follows from [19, Corollary 4.6] that any nef class in a smooth complete toric vari-
ety is effective, and hence there are nonnegative integers �j and irreducible surfaces
Zj �X such that

¹Tº D
X
j

�j
®
ŒZj �

¯
:

This example shows that, in general, HCC is not true and not implied by HC0.

Remark 5.2
Assume that C is a strongly extremal tropical variety which is approximable as a set
by logarithmic limit sets of a family of closed algebraic subvarieties of .C�/n. Then
by [1, Theorem 5.2.7], there are closed subvarieties Zi � .C�/n, and positive real
numbers �i such that

TC D lim
i!1

�i ŒZi �:

Therefore, nonapproximability of the tropical current TD TC in Theorem 5.1 implies
that there is no family of algebraic subvarieties of .C�/n whose logarithmic limit sets
approximate its underlying tropical variety C as a set.

5.2
Let G be an edge-weighted geometric graph in Rn n ¹0º, that is, an edge-weighted
graph whose vertices are nonzero vectors in Rn and edges are line segments in Rn n

¹0º. We suppose that all the edge-weights are real numbers. We write

u1; u2; : : : WD the vertices of G;

uiuj WD the edge connecting ui and uj ;

wij WD the weight on the edge uiuj :

We say that an edge uiuj is positive or negative according to the sign of the weight
wij .

Definition 5.3
An edge-weighted geometric graph G �Rn n ¹0º satisfies the balancing condition at
its vertex ui if there is a real number di such that

diui D
X
ui�uj

wijuj ;
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where the sum is over all neighbors of ui in G. The graph G is balanced if it satisfies
the balancing condition at each of its vertices.

The real numbers di are uniquely determined by G because all the vertices of G
are nonzero. When G is balanced, we define the tropical Laplacian of G to be the
real symmetric matrix LG with entries

.LG/ij WD

8̂̂<̂
:̂
di if ui D uj ;

�wij if ui � uj ;

0 if otherwise;

where the diagonal entries di are the real numbers satisfying

diui D
X
ui�uj

wijuj :

The tropical Laplacian of G has a combinatorial part and a geometric part:

LG DL.G/�D.G/:

The combinatorial part L.G/ is the combinatorial Laplacian of the abstract graph of
G as defined in [6], and the geometric part D.G/ is a diagonal matrix that depends
on the position of the vertices of G.

Definition 5.4
When G is balanced, we define the signature of G to be the triple

nC.G/ WD the positive index of inertia of LG ;

n�.G/ WD the negative index of inertia of LG ;

n0.G/ WD the corank of LG :

Let F be a 2-dimensional real weighted fan in Rn, that is, a 2-dimensional
weighted complex all of whose 2-dimensional cells are cones with real weights. We
define an edge-weighted geometric graph G.F /�Rn n ¹0º as follows.
(1) The set of vertices of G.F / is

¹ui j ui is a primitive generator of a 1-dimensional cone in F º:

(2) The set of edges of G.F / is

¹uiuj j the cone over uiuj is a 2-dimensional cone in F

with nonzero weightº:
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(3) The weights on the edges of G.F / are

wij WDwF
�
cone.uiuj /

�
:

We say that a weighted fan is unimodular if all of its cones are unimodular.

PROPOSITION 5.5
When F is unimodular, F is balanced if and only if G.F / is balanced.

Proof
Let uiuj be an edge of G.F /, let � be the cone over uiuj , and let � be the cone
over ui . Since � is unimodular, the image of uj in the normal lattice of � is u�=� , the
primitive generator of the ray

cone.� � �/=H� �H�=H� :

Therefore, the balancing condition for F at � is equivalent to the conditionX
ui�uj

wijuj 2R � ui :

A geometric graph G � Rn is said to be locally extremal if the set of neighbors
of ui is linearly independent for every vertex ui 2G.

PROPOSITION 5.6
Let F be a 2-dimensional real balanced weighted fan in Rn. If G.F / is connected
and locally extremal, then F is strongly extremal.

Proof
Let uiuj be an edge of G.F /, let � be the cone over uiuj , and let � be the cone
over ui . The image of uj in the normal lattice of � is a nonzero multiple of u�=� , and
hence the weighted fan F is locally extremal if and only if G.F / is locally extremal.
Since F is pure dimensional, F is connected in codimension 1 if and only if G.F / is
connected, and therefore the assertion follows from Proposition 2.15.

When F is balanced and unimodular, we define the tropical Laplacian of F to be
the tropical Laplacian of G.F /, and the signature of F to be the signature of G.F /:�

nC.F /; n�.F /; n0.F /
�
WD
�
nC
�
G.F /

�
; n�

�
G.F /

�
; n0

�
G.F /

��
:

In Sections 5.3 and 5.4, we introduce two basic operations on F and analyze the
change of the signature of F under each operation (see Figure 1).
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Figure 1. The operation F 7�! FCij produces one new eigenvalue whose sign coincides with the
sign of wij , and the operation F 7�! F�ij produces one new positive and one new negative

eigenvalue.

5.3
Let F be a 2-dimensional real weighted fan in Rn, and suppose that u1u2 is an edge
of G.F /. We set

n12 WD u1C u2;

and we define a 2-dimensional real-weighted fan FC12 as follows.
(1) The set of 1-dimensional cones in FC12 is®

cone.n12/
¯
[ ¹1-dimensional cones in F º:

(2) The set of 2-dimensional cones in FC12 is®
cone.u1n12/; cone.u2n12/

¯
[
®
2-dimensional cones in F other than cone.u1u2/

¯
:

(3) The weights on the 2-dimensional cones in FC12 are

w
F
C

12

�
cone.u1n12/

�
WD w12;

w
F
C

12

�
cone.u2n12/

�
WD w12;

w
F
C

12

�
cone.uiuj /

�
WD wij :

The abstract graph of G.FC12/ is a subdivision of the abstract graph of G.F /, with one
new vertex n12 subdividing the edge connecting u1 and u2. It is easy to see that
– FC12 is balanced if and only if F is balanced,
– FC12 is unimodular if and only if F is unimodular,
– FC12 is nondegenerate if and only if F is nondegenerate,
– FC12 is strongly extremal if and only if F is strongly extremal.
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Suppose F is balanced and unimodular, so that the tropical LaplaciansLG.F / and
L
G.F

C

12
/

are defined. The balancing condition for G.F / translates to the balancing

condition for G.FC12/, and we can compute the diagonal entries of L
G.F

C

12
/

from the

diagonal entries of LG.F /. The balancing condition for G.F / at ui is

diui D
X
ui�uj

wijuj ;

where the sum is over all neighbors of ui in the graph G.F /.
(1) The balancing condition for G.FC12/ at u1 is

.d1Cw12/u1 Dw12n12C
X
uj

w1juj ;

where the sum is over all neighbors of u1 other than u2 in the graph G.F /.
(2) The balancing condition for G.FC12/ at u2 is

.d2Cw12/u2 Dw12n12C
X
uj

w2juj ;

where the sum is over all neighbors of u2 other than u1 in the graph G.F /.
(3) The balancing condition for G.FC12/ at n12 is

w12n12 Dw12u1Cw12u2:

Around any other vertex, the geometric graphs G.F / and G.FC12/ are identical, and
hence the diagonal entries of the two tropical Laplacians agree.

PROPOSITION 5.7
We have

�
nC.F

C
12/; n�.F

C
12/; n0.F

C
12/
�
D

´
.nC.F /C 1;n�.F /; n0.F // if w12 is positive;

.nC.F /; n�.F /C 1;n0.F // if w12 is negative:

Proof
Let QG.F / and Q

G.F
C

12
/

be the quadratic forms associated to LG.F / and L
G.F

C

12
/
,

respectively. The above analysis of the balancing condition for G.FC12/ shows that

Q
G.F

C

12
/
.y12; x1; x2; x3; : : :/�QG.F /.x1; x2; x3; : : :/

Dw12x
2
1 Cw12x

2
2 C 2w12x1x2Cw12y

2
12 � 2w12x1y12 � 2y12x2y12;

where y12 is the variable corresponding to the new vertex n12 and xi is the variable
corresponding to ui . The above equation simplifies to
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Q
G.F

C

12
/
.y12; x1; x2; x3; : : :/�QG.F /.x1; x2; x3; : : :/Dw12.y12 � x1 � x2/

2;

and the conclusion follows.

5.4
An edge u1u2 of a geometric graph in Rn n ¹0º is said to be in general position if for
every other edge uiuj of the graph

span.u1; u2/\ span.ui ; uj /D

8̂̂<̂
:̂
0 if ¹u1; u2º \ ¹ui ; uj º D ;;

span.u1/ if ¹u1; u2º \ ¹ui ; uj º D ¹u1º;

span.u2/ if ¹u1; u2º \ ¹ui ; uj º D ¹u2º:

Let F be a 2-dimensional real weighted fan in Rn, and suppose that u1u2 is an edge
of G.F /. If u1u2 is in general position, we set

n1 WD �u1; n2 WD �u2;

and we define a 2-dimensional real-weighted fan F �12 as follows.
(1) The set of 1-dimensional cones in F �12 is®

cone.n1/; cone.n2/
¯
[ ¹1-dimensional cones in F º:

(2) The set of 2-dimensional cones in F �12 is®
cone.n1n2/; cone.n1u2/; cone.u1n2/

¯
[
®
2-dimensional cones in F other than cone.u1u2/

¯
:

(3) The weights on the 2-dimensional cones in F �12 are

wF�
12

�
cone.n1n2/

�
WD �w12;

wF�
12

�
cone.n1u2/

�
WD �w12;

wF�
12

�
cone.u1n2/

�
WD �w12;

wF�
12

�
cone.uiuj /

�
WD wij :

The cones in F �12 form a fan because u1u2 is in general position. The abstract graph
of G.F �12/ is a subdivision of the abstract graph of G.F /, with two new vertices n1
and n2 subdividing the edge connecting u1 and u2. It is easy to see that
– F �12 is balanced if and only if F is balanced,
– F �12 is unimodular if and only if F is unimodular,
– F �12 is nondegenerate if and only if F is nondegenerate,
– F �12 is strongly extremal if and only if F is strongly extremal.
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Suppose F is balanced and unimodular, so that the tropical Laplacians LG.F /
andLG.F�

12
/ are defined. The balancing condition forG.F / translates to the balancing

condition for G.F �12/, and we can compute the diagonal entries of LG.F�
12
/ from the

diagonal entries of LG.F /. The balancing condition for G.F / at ui is

diui D
X
ui�uj

wijuj ;

where the sum is over all neighbors of ui in the graph G.F /.
(1) The balancing condition for G.F �12/ at u1 is

d1u1 D .�w12/n2C
X
j

w1juj ;

where the sum is over all neighbors of u1 other than u2 in the graph G.F /.
(2) The balancing condition for G.F �12/ at u2 is

d2u2 D .�w12/n1C
X
j

w2juj ;

where the sum is over all neighbors of u2 other than u1 in the graph G.F /.
(3) The balancing condition for G.F �12/ at n1 is

0 � n1 D .�w12/u2C .�w12/n2:

(4) The balancing condition for G.F �12/ at n2 is

0 � n2 D .�w12/u1C .�w12/n1:

Around any other vertex, the geometric graphs G.F / and G.F �12/ are identical, and
hence the diagonal entries of the two tropical Laplacians agree.

PROPOSITION 5.8
We have �

nC.F
�
12/; n�.F

�
12/; n0.F

�
12/
�
D
�
nC.F /C 1;n�.F /C 1;n0.F /

�
:

Proof
Let QG.F / and QG.F�

12
/ be the quadratic forms associated to LG.F / and LG.F�

12
/,

respectively. The above analysis of the balancing condition for G.F �12/ shows that

QG.F�
12
/.y1; y2; x1; x2; x3; : : :/�QG.F /.x1; x2; x3; : : :/

Dw12x1x2Cw12x1y2Cw12x2y1Cw12y1y2;
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where y1, y2 are variables corresponding to n1, n2, respectively, and xi is the variable
corresponding to ui . The above equation simplifies to

QG.F�
12
/.y1; y2; x1; x2; x3; : : :/�QG.F /.x1; x2; x3; : : :/Dw12.y1C x1/.y2C x2/;

and the conclusion follows.

5.5
Let X be an n-dimensional smooth projective toric variety, let † be the fan of X , and
let p be an integer at least 2.

PROPOSITION 5.9
Let ¹Tº be a .p;p/-dimensional cohomology class in X . If there are nonnegative real
numbers �i and p-dimensional irreducible subvarieties Zi �X such that

¹Tº D lim
i!1

®
�i ŒZi �

¯
;

then, for any nef divisors H1;H2; : : : on X , the tropical Laplacian of the 2-
dimensional balanced weighted fan

¹H1º [ � � � [ ¹Hp�2º [ ¹Tº

has at most one negative eigenvalue.

In particular, by continuity of the cohomology class assignment, if a .2; 2/-
dimensional closed current T on X is the weak limit of the form

TD lim
i!1

�i ŒZi �;

where �i are nonnegative real numbers and Zi are irreducible surfaces in X , then the
tropical Laplacian of ¹Tº has at most one negative eigenvalue.

Proof
By repeatedly applying Bertini’s theorem (see [26, Corollaire 6.11]) to a general ele-
ment of the linear system jHi j, we are reduced to the case when p D 2. If there are
nonnegative real numbers �i and irreducible surfaces Zi �X such that

¹Tº D lim
i!1

®
�i ŒZi �

¯
;

then the tropical Laplacian of ¹Tº has at most one negative eigenvalue. By continuity,
it is enough to prove the following statement. If Z �X is an irreducible surface, then
the tropical Laplacian of ¹ŒZ�º has exactly one negative eigenvalue.
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Let F be the cohomology class ¹ŒZ�º, viewed as a 2-dimensional weighted fan
in Rn, and let

u1; u2; : : : WD primitive generators of 1-dimensional cones in †;

D1;D2; : : : WD torus-invariant prime divisors of cone.u1/; cone.u2/; : : : ;

L1;L2; : : : WD line bundles on X corresponding to D1;D2; : : : :

The 2-dimensional cones in F are the 2-dimensional cones in †, and the weights are
given by

wij WDwF
�
cone.uiuj /

�
D c1.Li /[ c1.Lj /\ cl.Z/DDi �Dj � cl.Z/:

Let di be a diagonal entry of the tropical Laplacian of F , determined by the balancing
condition

diui D
X
ui�uj

wijuj ;

where the sum is over all neighbors of ui in the graph of F . We claim that

di D�Di �Di � cl.Z/:

To see this, choose anym 2 .Zn/_ satisfying hui ;mi D 1. By the balancing condition
above, we have

di D
X
ui�uj

wij huj ;mi:

The divisor of the character 	m in X is

div.	m/D
X
j

huj ;miDj ;

where the sum is over all torus-invariant prime divisors in X (see [8, Propo-
sition 4.1.2]). Therefore, we have the rational equivalence

�Di �
X
j¤i

huj ;miDj ;

where the sum is over all torus-invariant prime divisors in X not equal to Di . Since
Di and Dj are disjoint when uiuj does not generate a cone in F , this implies that

�Di �Di � cl.Z/D
X
ui�uj

huj ;mi
�
Di �Dj � cl.Z/

�
;
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where the sum is over all neighbors of ui in the graph of F . It follows that

di D
X
ui�uj

wij huj ;mi D
X
ui�uj

huj ;mi
�
Di �Dj � cl.Z/

�
D�Di �Di � cl.Z/:

We now show that the tropical Laplacian of F has exactly one negative eigen-
value. Choose any resolution of singularities � W eZ �!Z. By the projection formula,
for any i and j ,

Di �Dj � cl.Z/D ��
�
c1.Li /

�
[ ��

�
c1.Lj /

�
\ cl.eZ/:

Let V be the real vector space with basis e1; e2; : : : , and consider the linear map to
the Néron–Severi space

V �!NS1
R
.eZ/; ei 7�! ��

�
c1.Li /

�
:

By the computation made above, the quadratic form associated to the tropical Lapla-
cian of F is obtained as the composition

V � V NS1
R
.eZ/�NS1

R
.eZ/ �I

R;

where I is the intersection form on eZ. By the Hodge index theorem (see [20, Chap-
ter 4]), �I has signature of the form .�� 1; 1; 0/, and hence the tropical Laplacian of
F has at most one negative eigenvalue. Since X is projective, the tropical Laplacian
has, in fact, exactly one negative eigenvalue.

The following application of Milman’s converse to the Krein–Milman theorem
relates extremality to the strongly positive Hodge conjecture (see [9, Proof of Propo-
sition 5.2]).

PROPOSITION 5.10
Let T be a .p;p/-dimensional closed current on X of the form

TD lim
i!1

Ti ; Ti D
X
j

�ij ŒZij �;

where �ij are nonnegative real numbers and Zij are p-dimensional irreducible sub-
varieties of X . If T generates an extremal ray of the cone of strongly positive closed
currents on X , then there are nonnegative real numbers �i and p-dimensional irre-
ducible subvarieties Zi �X such that

TD lim
i!1

�i ŒZi �:
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Proof
For a .p;p/-dimensional positive current T on X , we set

kT k WD

Z
X

T ^wp;

where w is the fixed Kähler form on X . Consider the sets of positive currents

S WD
®
T W T is a .p;p/-dimensional positive closed current with kT k D 1

¯
;

K WD
° ŒZ�

kŒZ�k
WZ is a p-dimensional irreducible subvariety of X

±
� S:

The Banach–Alaoglu theorem (see [30, Theorem 3.15]) shows that S is compact, and
hence the closure K� S and the closed convex hull co.K/� S are compact. Since the
space of .p;p/-dimensional currents on X is locally convex, Milman’s theorem (see
[30, Theorem 3.25]) applies to these compact sets: every extremal element of co.K/
is contained in K. To conclude, we note that

T

kTk
2 co.K/:

Indeed, the current Ti is nonzero for sufficiently large i , and

T

kTk
D lim
i!1

Ti

kTik
;

Ti

kTik
2 co.K/:

Furthermore, since the cone of strongly positive closed currents contains co.K/, the
current T=kTk is an extremal element of co.K/. It follows from Milman’s theorem
that

T

kTk
2K:

In other words, there are p-dimensional irreducible subvarieties Zi �X such that

T

kTk
D lim
i!1

ŒZi �

kŒZi �k
:

5.6
Suppose that F is a 2-dimensional real weighted fan in Rn with the following prop-
erties:
– F is balanced, unimodular, and nondegenerate,
– G.F / is connected and locally extremal,
– the negative edges of G.F / are pairwise disjoint and in general position.
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Let u1u2; u3u4; : : : be the negative edges of G.F /, and let m be the number of nega-
tive edges. Since the negative edges are pairwise disjoint and in general position, we
may define

eF WD ��.F �12/�34��56 : : :��2m�12m:
The resulting weighted fan eF has the following properties:
– eF is positive,
– eF is balanced, unimodular, and nondegenerate,
– G.eF / is connected and locally extremal.
In addition, by Proposition 5.8,

n�.eF /� �the number of negative edges of G.F /
�
:

We construct an example of F in R4 with the stated properties.
We start from a geometric realization G � R4 n ¹0º of the complete bipartite

graph

e1 e2 e3 e4

f1 f2 f3 f4;

where e1, e2, e3, e4 are the standard basis vectors of R4 and f1, f2, f3, f4 are suitable
primitive integral vectors to be determined.

Let M be the matrix with row vectors f1, f2, f3, f4, and let P be the collection
of cones

¹0º [
®
cone.ui /

ˇ̌
ui is a vertex of G

¯
[
®
cone.uiuj /

ˇ̌
uiuj is an edge of G

¯
:

If the determinant of M is nonzero, then ¹f1; f2; f3; f4º is linearly independent, and
hence G is locally extremal.

LEMMA 5.11
If all .2 � 2/-minors of M are nonzero, then every edge of G is in general position,
and P is a fan.

Proof
We show that every edge of G is in general position. It is easy to check from this that
P is a fan. By symmetry, it is enough to show that
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span.e1; f1/\ span.e2; f2/D 0;

span.e1; f1/\ span.e1; f2/D span.e1/;

span.e1; f1/\ span.e2; f1/D span.f1/:

This follows from direct computation. For example, the intersection span.e1; f1/ \
span.e2; f2/ is isomorphic to the kernel of the transpose of the submatrixM¹1;2º;¹3;4º,
which is nonsingular by assumption. Therefore, we have the first equality. The other
two equalities can be shown in a similar way.

If the determinant of M is nonzero, then G is locally extremal, and hence any
two balanced edge-weights on G are proportional. For a randomly chosen M , the
graph G does not admit any nonzero balanced weight.

LEMMA 5.12
If the columns of M form an orthogonal basis of R4, then G admits a nonzero bal-
anced integral weight, unique up to a constant multiple.

Proof
The uniqueness follows from the connectedness and the local extremality of G. We
define edge-weights on G by setting0BB@

w.e1f1/ w.e2f1/ w.e3f1/ w.e4f1/
w.e1f2/ w.e2f2/ w.e3f2/ w.e4f2/
w.e1f3/ w.e2f3/ w.e3f3/ w.e4f3/
w.e1f4/ w.e2f4/ w.e3f4/ w.e4f4/

1CCA WDM;
where w.eifj / denote the weight on the edge eifj . It is straightforward to check that
G is balanced. For example, the balancing condition for G at f1 is

f1 D f11e1C f12e2C f13e3C f14e4;

and the balancing condition for G at e1 is

.f 211C f
2
21C f

2
31C f

2
41/e1 D f11f1C f21f2C f31f3C f41f4:

Suppose that M is an integral matrix all of whose .2 � 2/-minors are nonzero.
If columns of M form an orthogonal basis of R4, then we can construct a balanced
weighted fan F on P using Lemmas 5.11 and 5.12. If, furthermore, all the entries
of M are either 0 or ˙1, then F is unimodular, and if each row and column of M
contains at most one negative entry, then the negative edges of G.F / are pairwise
disjoint.
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As a concrete example, we take

M WD

0BB@
0 1 1 1

1 0 �1 1

1 1 0 �1

1 �1 1 0

1CCA :
The determinant of M is �9, and the .2� 2/-minors of M are

�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;�1;

C1;C1;C1;C1;C1;C1;C1;C1;C1;C1;C1;�2;�2;�2;C2;C2;C2:

It follows that P is a unimodular fan and all edges of G are in general position. The
columns ofM form an orthogonal basis of R4, and hence P admits a balanced integral
weight as in Lemma 5.12. This defines a balanced weighted unimodular fan F . The
abstract graph of G.F / is

e1 e2 e3 e4

f1 f2 f3 f4;

where the three edges with negative weights are denoted by dashed lines. Since nega-
tive edges of G.F / are pairwise disjoint and in general position, we can construct the
positive balanced weighted fan eF from F . We order the vertices of G.eF / by

Ce1;Ce2;Ce3;Ce4;Cf1;Cf2;Cf3;Cf4;�e2;�e3;�e4;�f2;�f3;�f4:

The tropical Laplacian of G.eF / is the symmetric matrix

LG. eF / D

0BBBBBBBBBBBBBBBBBBBBBB@

3 0 0 0 0 �1 �1 �1 0 0 0 0 0 0

0 3 0 0 �1 0 �1 0 0 0 0 0 0 �1

0 0 3 0 �1 0 0 �1 0 0 0 �1 0 0

0 0 0 3 �1 �1 0 0 0 0 0 0 �1 0

0 �1 �1 �1 1 0 0 0 0 0 0 0 0 0

�1 0 0 �1 0 1 0 0 0 �1 0 0 0 0

�1 �1 0 0 0 0 1 0 0 0 �1 0 0 0

�1 0 �1 0 0 0 0 1 �1 0 0 0 0 0

0 0 0 0 0 0 0 �1 0 0 0 0 0 �1

0 0 0 0 0 �1 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 �1 0 0 0 0 0 �1 0

0 0 �1 0 0 0 0 0 0 �1 0 0 0 0

0 0 0 �1 0 0 0 0 0 0 �1 0 0 0

0 �1 0 0 0 0 0 0 �1 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCA

;
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and �
nC.eF /;n�.eF /;n0.eF /�D .7; 3; 4/:

We use the weighted fan eF to construct the strongly positive closed current T in
Theorem 5.1.

Proof of Theorem 5.1
There is a refinement of eF that is compatible with a complete fan †1 on R4; this
is a general fact on extension of fans (see [4, Proposition 3.15]). Applying the toric
Chow lemma (see [8, Theorem 6.1.18]) and toric resolution of singularities (see [8,
Theorem 11.1.9]) to †1 in that order, we can construct a subdivision †2 of †1 that
defines a smooth projective toric variety X . Let C be the refinement of eF that is com-
patible with†2. Since C is a unimodular refinement of the 2-dimensional unimodular
weighted fan eF , it is obtained from eF by repeated application of the construction
F 7�! FCij in Section 5.3 (see [8, Lemma 10.4.2]). Therefore C is strongly extremal,
and by Proposition 5.7,

n�.C/D n�.eF /D 3:
Let T WD TC be the tropical current on X associated to the nondegenerate weighted
fan C. We note that
(1) TC is strongly positive because C is positive,
(2) TC is closed because C is balanced (see Proposition 4.4),
(3) TC is strongly extremal because C is strongly extremal (see Proposition 4.9).
We show that TC is not a weak limit of the form

lim
i!1

Ti ; Ti D
X
j

�ij ŒZij �;

where �ij are nonnegative real numbers and Zij are irreducible surfaces in X . If
otherwise, since TC is strongly extremal, Proposition 5.10 implies that there are non-
negative real numbers �i and p-dimensional irreducible subvarieties Zi � X such
that

TC D lim
i!1

�i ŒZi �:

Therefore, by Proposition 5.9, the tropical Laplacian of ¹TCº has at most one negative
eigenvalue. However, by Theorem 4.7,

¹TCº D C;

whose tropical Laplacian has three negative eigenvalues, which is a contradiction.
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