
Are events fast?

Gabriel Kerneis and Juliusz Chroboczek

PPS, Université de Paris 7, Paris, France

kerneis@pps.jussieu.fr

12 January 2009

Abstract

We compare a set of web servers on a simple synthetic
workload. We show that, on this particular bench-
mark, event-driven code is as fast or faster than the
fastest implementations using thread libraries.

1 Introduction

Increasingly, the programs we write are concurrent :
they simultaneously communicate with their environ-
ment over multiple channels, and need to react to in-
put events as they arrive in a nondeterministic order.
The most obvious examples of such programs are net-
work daemons, that need to simultaneously service
multiple clients or peers, programs with a graphical
user interface (GUI), that need to simultaneously ser-
vice multiple input devices, and networked GUI pro-
grams such as web browsers, that need to do both.

There are two main paradigms for writing such pro-
grams: threads and event loops.

Threads When using threads, a concurrent pro-
gram is described as a set of sequential threads
of control, communicating through shared memory.
Threads may be created and destroyed dynamically,
or there may be a thread pool, a statically sized set of
threads that compete for the work to be performed.

Threads can be implemented in an operating sys-
tem kernel, in which case we speak of kernel threads;
they can also be implemented by a user-space li-
brary, in which case we speak of user threads. Kernel
and user threads have different performance tradeoffs:
kernel threads require a relatively expensive kernel in-

tervention at context-switch time, but they allow the
use of multiple CPUs or CPU cores. Additionally,
kernel threads allow the direct use of native system
services, while with user threads, precautions must
be taken to avoid blocking the whole program when
invoking a blocking system call.

Event-driven programs In an event-driven style,
the concurrent program is described as a set of event
handlers that handle the situations that can occur,
such as receiving a request for a new connection, re-
ceiving a client request, or a client timeout.

The set of events, and the set of associated event
handlers, can change over time; for example, after
a new connection has been established, a new event
handler is established for handling requests arriving
on that particular connection.

Performance issues Event-driven programming
is rumoured [8] to have a number of advantages
over threads. First, event-handlers are tiny, heap-
allocated data structures, unlike thread contexts,
which include a large, statically allocated stack. A
highly concurrent event-driven program will there-
fore likely use less memory than a threaded program.
Second, switching between event handlers involves a
mere (indirect) function call; a thread switch, on the
other hand, may involve one or more system calls
with the associated mode-switching penalty. Finally,
since event handlers are scheduled within user code,
an event-driven program is likely to provide more de-
terministic response than a threaded one.

The performance advantage of event-driven pro-
grams, however, is not as obvious as might appear

1



from the above description. A thread’s state is split
between a number of locations: the processor’s regis-
ters (including the program counter), stack-allocated
variables and heap-allocated structures. An event
handler, on the other hand, receives much of its state
in the form of a single heap-allocated data struc-
ture; this structure must be unpacked and its contents
“spread”into the processor’s registers before the event
handler can be run, which involves at least one indi-
rect load per register. Thus, event-driven program-
ming avoids the localised cost associated to thread
contexts, but pays a price that is spread throughout
the program and hence difficult to quantify.

Automatic generation of threaded programs
In a threaded program, the flow of control of every
single thread is explicit. In an event-driven program,
on the other hand, the flow of control is broken into a
possibly large number of possibly tiny event handlers.
Because of that, event-driven programming is diffi-
cult and error-prone, and most programmers choose
to avoid it.

The authors are currently experimenting with au-
tomatic generation of event-driven programs from a
threaded description [4]. Our software, called CPC,
takes a threaded description of a program, and pro-
duces an event-driven program that is equivalent, in
a suitable sense, to the original description. Since
the main import of this work is to combine the ru-
moured efficiency of event-driven programs with the
convenience and intuitiveness of thread-based pro-
gramming, it is of the utmost importance for us to un-
derstand the effective efficiency of event-driven pro-
grams.

Experimental approach The aim of this work is
to precisely quantify the relative performance of ker-
nel threads, user-space threads, hand-written event-
driven programs, and automatically generated event-
driven programs.

Our goal being to compare implementations of con-
currency, rather than to provide realistic benchmarks
of concurrent programs, we have chosen to use a
simple, well-understood and repeatable benchmark
rather than a realistic one. We have benchmarked

a number of HTTP servers written in different pro-
gramming styles, serving a single short (305 bytes)
page to varying numbers of simultaneous clients. The
servers measured include on the one hand a number
of high-quality production servers, and on the other
hand a number of “toy” servers written for this exer-
cice.

2 Experimental approach

As noted above, we have used a simple, easily repro-
ducible setup which would show how well a number
of web server implementations handle multiple con-
current requests.

We have used the ApacheBench client which is de-
signed to generate a constant load on a web server.
Given a parameter l known as the concurrency level
or simply load, ApacheBench tries to generate a self-
clocking stream of requests timed so that the number
of open connections at any given time is exactly l.

In practice, however, we have found that
ApacheBench needs a period of time to “ramp up”;
for this reason, we have discarded the first and last
1,000 samples from our measurements.

Tuning We were very much surprised by our first
batch of experimental data. Below 128 simultaneous
clients, the median and the average latency coincided
and were linear in the number of simultaneous clients,
just as expected. Above that threshold, however, the
median latency remained at a constant value of 50 ms,
while the average value became irregular and irrepro-
ducible. These results were caused by a small number
of extreme outliers — requests that were being served
in 200 ms or more.

In order to understand the phenomenon, we came
up with the notion of measured load of a benchmark
run. Consider an ideal run, in which there is no idle
time: the number of in-flight requests at any given
time is exactly l. Writing t for the total run time
of the test, n the total number of requests serviced,
and tr the average servicing time for a request, we
would then have t = n · tr/l. We therefore define the
measured load lm as lm = n · tr/t; this value is always
lower than the desired load l, and we would hope that

2



(a) somaxconn = 128 (b) somaxconn = 1024

Figure 1: Measured load against offered load, before and after tuning

it is very close to l in a run in which the client is able
to saturate the server.

Plotting the measured load against the offered load
(Fig. 1(a)) showed us that, however large the offered
load, the effective load never exceeded roughly 130;
obviously, something in our setup was limiting the
number of connections to 130.

It turned out that the bottleneck was the kernel
variable somaxconn, the value of which defaults to
128 [3]. The listen system call, which is used to es-
tablish a passive (“listening”) socket, takes a parame-
ter that indicates the length of the associated “accept
queue”; when this queue becomes full, e.g. because
the server doesn’t accept connections fast enough,
new requests are discarded, and will be resent by the
client after a timeout. The variable somaxconn limits
the size of this queue: the parameter to listen is
silently limited to the value of somaxconn. Raising
somaxconn to 1024 solves the problem (Fig 1(b)).

Other potential bottlenecks In order to ensure
that our results apply more generally and are not spe-
cific to our particular setup, we repeated our bench-
marks while varying other parameters, and found
that they had no significant impact on the results.
In particular, using different network cards and re-
moving the switch between the client and the server
yielded no measurable difference — hence, no hard-
ware queues were being overflown. Using different
computers (a faster client, a slower server) yielded
slightly different figures, but didn’t change the gen-

eral conclusions. Finally, preloading the served file
into memory only caused a slight additive difference.
Tests with differently sized files (up to 100 kB) con-
firmed the general thrust of our results.

3 Implementations

We benchmarked four production web servers, and
a set of “toy” web servers that were written for this
particular purpose.

Full-fledged web servers Apache [2] is the most
widely deployed web server in the Internet today;
hence, a benchmark of web servers must include it as
a comparison point. One of the claimed advantages
of Apache 2 is its ability to run with different con-
currency models; we measured two of Apache’s con-
currency models, the process-pool model (“prefork”)
and the thread-pool model (“worker”).

Thttpd [1] is a small event-driven server which
was considered as one of the fastest open-source web
servers in the late 1990s. It uses a standard event-
driven model, with one minor twist: connections are
accepted eagerly, and kept in a user-space queue of
accepted connections until they are serviced.

Polipo [5] is an HTTP proxy written by the second
author that can also act as a web server. It uses a
fairly standard event-driven model.

Lighttpd [7] is a recent, highly optimised event-
driven web server.

3



Toy servers We have written a set of toy web
servers (less than 200 lines each) that share the ex-
act same structure: a single thread or process waits
for incoming connections, and spawns a new thread
or process as soon as one is accepted; our servers do
not use any clever implementation techniques, such
as thread pools. Because of this simple structure,
these servers can be directly compared, and we are
able to benchmark the underlying implementation of
concurrency rather than the implementation of the
web server.

One of these web servers uses heavy-weight Unix
processes, created using the fork system call. One is
written using NPTL, the native thread library used
in Linux version 2.6. Two are written using standard
user-space thread libraries, called respectively Pth [6]
and ST [9].

Finally, one uses CPC [4], our experimental source-
to-source translator that converts programs written
in a threaded style into event-driven programs. While
CPC is at a very early stage, and doesn’t yet contain
many of the optimisations that are possible, we be-
lieve that the code that it generates is representative
of näıve event-driven programming.

4 Experimental results

Fig. 2 presents the results of our experiment. It plots
the average serving time per request against the de-
sired load; a smaller slope indicates a faster server.
With the exception of Apache, the curves are ex-
tremely regular (in each case, the correlation coeffi-
cient between the mean reponse time and the offered
load is above 0.999).

Discussion Apache artificially limits the size of
the accept queue to 512; hence, its results for more
than 512 simultaneous requests should not be taken
into account. Apache turned out to be the slowest
amongst the production servers that we considered;
moreover, we found that the process-pool (prefork)
and the thread-pool (worker) implementations per-
formed equally poorly.

All three event-driven production servers were sig-
nificantly faster than Apache, and their performance

was roughly similar. Thttpd was somewhat slower
than Polipo, and Lighttpd very slightly faster; we
believe that the difference is due to different micro-
optimisations rather than to any fundamental dif-
ference between the three servers. Incidentally, re-
sults when the accept queue did overflow (not shown)
were much more regular for thttpd than for the other
servers, which shows the effect of a user-space accept
queue.

The production servers were generally slower than
the toy servers, as the former need to perform addi-
tional activities such as security checks, monitoring
user files for changes, etc.

The implementation using full-fledged processes,
created using the fork system call, was slower than
any other of the implementations that we bench-
marked, while the version implemented using NPTL,
the library based on the native (kernel) threads of
the Linux operating system, turned out to be surpris-
ingly fast. The good showing of NPTL indicates that,
even on a modern virtual-memory system, fork’s over-
head is due to manipulating virtual memory struc-
tures rather than to kernel-side scheduling; in fact,
NPTL’s performance is close to that of the poorer
user-space libraries.

The user-space threading libraries, Pth and ST,
behaved quite differently. Pth yielded results simi-
lar to those of NPTL, while ST yielded excellent re-
sults; a cursory examination of ST’s sources indicates
that it uses some rather clever data structures (e.g.
heaps for storing timeouts) and a number of micro-
optimisations, some of which could easily be reused
in other user-space implementations of threads.

Finally, the version implemented using CPC, our
source-to-source transformation framework that con-
verts threaded programs to event-driven ones, gave
results that were better than all of the other imple-
mentations save the one using ST. Since CPC’s sched-
uler is not as clever as the one in ST, and that many
of the optimisations used by the latter can be used
in the former, we believe that this is an encouraging
result.

4



(a) Full-fledged web servers (b) Toy web servers

Figure 2: Web servers comparison

5 Conclusion

Our results indicate that, for one particular class
of realistic programs, event-driven programs are as
fast as the fastest user-space thread libraries. Since
events have much smaller memory requirements than
threads, this indicates that they are an interesting
technique for a certain class of environments. This
encourages us to continue our research about au-
tomatic generation of event-driven programs from
threaded descriptions.

References

[1] The thttpd man page, v. 2.25b. December 2003.

[2] Apache HTTP Server Version 2.2 Documenta-
tion, v. 2.2.9. June 2006.

[3] Gaurav Banga and Peter Druschel. Measuring the
capacity of a web server. In Proc. USITS’97, pp.
61–71, Berkeley, CA, USA, 1997. USENIX Asso-
ciation.

[4] Juliusz Chroboczek. The CPC manual, prelim-
inary edition. June 2008. Available online at
http://www.pps.jussieu.fr/~jch/software/

cpc/cpc-manual.pdf.

[5] Juliusz Chroboczek. The Polipo manual, v. 1.0.4.
January 2008.

[6] Ralf S. Engelschall. The GNU Portable Threads
manual, v. 2.0.7. June 2006.

[7] The Lighttpd manual, v. 1.4.19. March 2008.

[8] John Ousterhout. Why threads are a bad idea
(for most purposes). January 1996.

[9] Gene Shekhtman and Mike Abbott. The State
Threads Library Documentation, v. 1.7. June
2006.

A Experimental setup

The server is a Pentium-M laptop, downclocked to
600 MHz to ensure that it is slower than the client;
CPU usage was close to 100 % during all of the tests.
The client is a standard workstation using an AMD
Athlon 64 at 2.2 GHz, with power-saving features
turned off; in none of our tests did its CPU usage rise
above 20 %. Both machines have Gigabit Ethernet
interfaces, and were connected through a dedicated
Gigabit Ethernet switch. We used the standard Eth-
ernet MTU of 1500 bytes.

The server and the client were both running Linux
kernel 2.6.24. We used Apache 2.2, Thttpd 2.25b,
Polipo 1.0.4 and Lighttpd 1.4.19, and the version of
ApacheBench included with Apache 2.2; the libraries
used were ST 1.7 and Pth 2.0.7.

5


