
Algorithms 2
Section 4: Geometric Algorithms

264

Polygons

265

Polygons are an ordered list of vertices.

Vertices are points (vectors) in some kind of 2D vector space.

We are mostly interested in planar, closed, simple polygons.

Our first problem is to work out whether a point is on the “inside” of a polygon.

Planar Polygons [1]

If the space in which the polygon exists is not planar, it can be tricky or impossible
to define “inside” and “outside”.

Example: the Earth’s surface is (roughly) spherical; is Cambridge (assumed to be
a point) “inside” the UK mainland (represented as a polygon), or “outside”?
Neither label makes sense because the polygon boundary divides two finite areas
and we could label either as “inside”.

Note that we cannot say the “smaller” area is “inside”: ask whether a container
ship’s position is “inside” the ocean polygon or is on land.

266

Planar Polygons [2]

A planar space is 2D, flat, and infinite in the “horizontal” and “vertical” directions.

A polygon drawn on a planar surface separates a finite area from an infinite area:
we refer to the finite area as “inside” and the infinite area as “outside”.

267

Closed Polygons

A closed polygon is one where there is an edge from its last vertex back to its first.

An open polygon does not (necessarily) enclose any area so we cannot define
inside and outside.

Example: can you be “inside” the letter O? What about letter C?

268

Simple Polygons [1]

Simple polygons do not overlap themselves.

269

Winding Numbers [1]

How do we define what is “inside” a complex polygon?

One way is with the winding number.

Walk around the perimeter with a piece
of string attached to a post at the point of interest.

270

Winding Numbers [2]

When you get back to the start, if the string is wound around the post an odd
number of times, the post is on the inside; otherwise it is on the outside.

271

Winding Numbers [3]

We can implement this algorithm on a computer:

1. calculate angles subtended at the post by the two ends of each edge;
2. sum the angles
3. divide by 2𝛑 to get the winding number.

Problems: floating point inaccuracy; slow trigonometric functions.

272

Inclusion within Simple, Planar, Closed Polygons

Add a semi-line from the point of interest P, in any direction.

A semi-line is infinite in one direction. Because the coordinates of any vertex
are finite values, a point at infinity
must be on the “outside”. Because
the polygon is simple, planar and
closed, each edge separates a
a region of “inside” from a region of
“outside” so we can count edge
crossings.

273

Awkward cases

If the ray goes through a vertex, we could discard the ray and send one in a
different direction; keep retrying until it doesn’t hit any vertices.

The horizontal ray avoids floating point error in calculations of whether we hit the
vertex, were slightly above or were slightly below because (non-NaN) floats are
totally ordered.

274

…

…

…… ………

…

1 2 3 4

Handling the Awkward cases

If a vertex is on the ray, look at the neighbouring vertices. If they’re on the same
side (both above / both below) then the polygon’s edge was not crossed (case 2);
if they are on opposite sides then the edge was crossed (case 1).

If either neighbour is also on the ray, replace it with the next neighbour in the same
direction around the polygon boundary.

275

…

…

…… ………

…

1 2 3 4

Line segments

A line segment p1p2 is a straight line between two points p1 and p2. We say that
p1 and p2 are the endpoints and, if the line has a direction then we have a
directed segment p1→p2.

These points might be adjacent vertices in a polygon or the test point and a point
“at infinity”.

276

Convex combinations

If p1 = (x1,y1) and p2 = (x2,y2), then we say that p3 = (x3,y3) is a convex
combination of p1 and p2 if p3 is on the line segment between p1 and p2 (including
the endpoints).

Mathematically, x3 = 𝛂x1 + (1-𝛂) x2 and y3 = 𝛂y1 + (1-𝛂) y2. This is often written as
the vector equation p3 = 𝛂p1 + (1-𝛂)p2. We require 0 ≤ 𝛂 ≤ 1, to place p3 between
p1 and p2 inclusive of the endpoints.

277

Intersection Determination Problem

Input: two line segments p1p2 and p3p4.

Output: true if the line segments intersect; false otherwise.

278

→ True → False → False

Intersection Determination

We would like to avoid trigonometry (slow).

The “high school maths” approach based on two equations of the form y = mx + c
leads to divisions, which are slow in floating point, and introduce error that cannot
be managed as effectively as with addition and multiplication (a concept known as
infinite precision). This can lead to incorrect answers: small floating point errors
can lead to the intersection of these two lines being “off the end” of the segments
so not counting.

This problem is ill-conditioned
for numeric solution.

279
💡 Definition of an ill-conditioned problem: a small change in the input
data can result in a large change in the output.

Cross Products

The vector cross product turns out to be very useful.

280💡 This is Figure 33.1 from CLRS3.

y

x

p1

p2

p1+p2 p
y

x

The cross product of p1 and p2 can be thought
of as the signed area of the parallelogram.

The darker regions contains position
vectors that are anticlockwise from p;
the lighter region contains vectors that
are clockwise from p.

Matrix Determinants

p1 ⨉ p2 = det

= x1y2 - x2y1

= -p2 ⨉ p1

If p1 ⨉ p2 > 0 then p1 is clockwise from p2 with respect to the origin.
If p1 ⨉ p2 < 0 then p1 is anticlockwise from p2 with respect to the origin.
If p1 ⨉ p2 = 0 then p1 and p2 are collinear (parallel or antiparallel).

281

x1 x2
y1 y2

Line Segment Intersection

Check whether each line segment straddles the extension of the other. The
extension of a line segment is the (infinite) line containing its two endpoints, i.e.
drop the constraint that 0 ≤ 𝛂 ≤ 1.

Two line segments intersect if and only if

● each segment straddles the line containing the other; or
● an endpoint of one segment lies on the other segment.

In this example, one segment cross the extension of
the other, but not vice-versa. No intersection.

282

SEGMENTS-INTERSECT(p1,p2,p3,p4) [1]

1 d1 = DIRECTION(p3,p4,p1) // Relative orientation of

2 d2 = DIRECTION(p3,p4,p2) // each endpoint w.r.t. the

3 d3 = DIRECTION(p1,p2,p3) // other segment

4 d4 = DIRECTION(p1,p2,p4)

5 if ((d1>0 && d2<0) || (d1<0 && d2>0)) &&

((d3>0 && d4<0) || (d3<0 && d4>0))

6 return true

283

💡If p3→p1 and p3→p2 have opposite directions w.r.t. p3→p4 then p1p2 straddles p3p4.

💡If p1→p3 and p1→p4 have opposite directions w.r.t. p1→p2 then p3p4 straddles p1p2.

SEGMENTS-INTERSECT(p1,p2,p3,p4) [2]

7 else if d1==0 && ON-SEGMENT(p3,p4,p1) return true

8 else if d2==0 && ON-SEGMENT(p3,p4,p2) return true

9 else if d3==0 && ON-SEGMENT(p1,p2,p3) return true

10 else if d4==0 && ON-SEGMENT(p1,p2,p4) return true

11 return false

DIRECTION(pi,pj,pk) = (pk-pi) x (pj-pi)

ON-SEGMENT(pi,pj,pk) = (min(xi,xj) ≤ xk ≤ max(xi,xj)) &&
 (min(yi,yj) ≤ yk ≤ max(yi,yj))

284

💡If p1 or p2 is on p3p4 then the segments intersect if that point is within the limits of the segment (L7,8).

💡If p3 or p4 is on p1p2 then the segments intersect if that point is within the limits of the segment (L9,10).

n-Segment Intersection Problem

285

Input: n line segments, each specified as pairs of endpoints, pi for 1 ≤ i ≤ n.

Output: true if any pair intersects; false otherwise.

Obvious solution: solve the segment intersection problem for all pairs, O(n2).

There is a smarter solution called sweeping with running time O(n lg n) that
exploits the geometry of lines in a plane to constrain the cases that must be
considered. Supervision exercise!

Convex Hull Problem

Input: a set of n>2 points pi for 1 ≤ i ≤ n. At least 3 points are not collinear (so the
polygon is not a zero-area line).

Output: an ordered list of points forming a convex hull for the input points.

The furthest-apart of a set of points in a plane are both on the convex hull. The
convex hull of a set of points is a minimal subset that forms a convex polygon with
none of the points outside the polygon (i.e. either inside or on the edge).

286
✅ Convex Hull ❌ Not convex!

Five Solutions

1. Rotational Sweeps
a. Graham’s Scan O(n lg n)
b. Jarvis’s March O(n h)

2. Incremental O(n lg n)
3. Divide and Conquer O(n lg n)
4. Prune and Search O(n lg h)

n: number of points in the input data
h: number of points on the convex hull produced

Prune-and-Search is asymptotically fastest since h ≤ n.

287

Graham’s Scan [1]

● Start at the left-most of the bottom-most points.
● Sort the points by increasing polar angle relative to a horizontal line through

this point.
○ Resolve tie-breaks by retaining only the point farthest from the start point.

● Push the first three points onto an initially empty stack.
● For each of the other points, p, taken in the sorted order:

○ Pop off the stack until the directed segment from the next-to-top vertex on the stack to the top
vertex on the stack forms a (strictly) left turn with the directed segment from top vertex to p

○ Push p onto the stack.
● The points on the stack are the convex hull.

288

Graham’s Scan [2]

To sort by polar angle, we do not need to compute the angles!

The cross product a ⨉ b = |a| |b| sin θ, where θ is the angle between the vectors a
and b.

If a and b are unit vectors, sorting by the value of the cross product is the same as
a sort by θ because sin θ is monotonic with θ for -𝝅/2 ≤ θ < 𝝅/2.

Normalising the vectors is often quicker than trigonometry.

289

Graham’s Scan [3]

290

9

8

7

3

2

6 4

1

5

Graham’s Scan [4]

291

9

8

7

3

2

6 4

1

5

Graham’s Scan [5]

292

9

8

7

3

2

6 4

1

5

Graham’s Scan [6]

293

9

8

7

3

2

6 4

1

5

Graham’s Scan [7]

294

9

8

7

3

2

6 4

1

5

Graham’s Scan [8]

295

9

8

7

3

2

6 4

1

5

Graham’s Scan [9]

296

9

8

7

3

2

6 4

1

5

Graham’s Scan [10]

297

9

8

7

3

2

6 4

1

5

Graham’s Scan [11]

298

9

8

7

3

2

6 4

1

5

Graham’s Scan [12]

299

9

8

7

3

2

6 4

1

5

Graham’s Scan [13]

300

9

8

7

3

2

6 4

1

5

Graham’s Scan [14]

301

9

8

7

3

2

6 4

1

5

Analysis of Graham’s Scan

Calculating one polar angle is O(1). Calculating n of them is O(n).

Sorting n polar angles is O(n lg n), with any sensible comparison-based sort
(including the tie-break logic to discard points with sub-maximal distance).

As we walk around the hull, each point is only pushed to the stack at most once
and is removed at most once. Every comparison either adds a point to the stack
or removes a point from the stack. Hence the walk is O(n).

Graham’s Scan costs O(n lg n), dominated by the sorting step.

302

Jarvis’s March [1]

● Start with the left-most of the bottom-most points, p1, which is on the hull.
● Find the point p2 with the least polar angle relative to a horizontal line through

p1. p2 is also on the hull.
● Repeatedly find the point pi+1 with the least polar angle relative to the line

through pi-1 and pi. pi+1 is on the hull. The pi form the right chain.
○ The repetition continues until a top-most point is reached (might not be unique).

● Repeat the previous two bullets to find the left chain using greatest polar
angles.

● Join the right chain and left chain to get the convex hull.

303

Jarvis’s March [2]

304

9

8

7

3

2

6 4

1

5

Jarvis’s March [3]

305

9

8

7

3

2

6 4

1

5

Jarvis’s March [4]

306

9

8

7

3

2

6 4

1

5

Jarvis’s March [5]

307

9

8

7

3

2

6 4

1

5

Jarvis’s March [6]

308

9

8

7

3

2

6 4

1

5

Analysis of Jarvis’s March

Calculating one polar angle is O(1). Calculating n of them is O(n).

Finding the minimum of n numbers is O(n).

Repeating that h times is O(n h).

The right/left chain allows us to exploit the cross product trick for comparisons
because the polar angles, θ, we handle are always in the range -𝝅/2 ≤ θ < 𝝅/2.

309

Revision Guide / Summary of Algorithms 2 [1]

● Graphs
○ Representing the edge set with adjacency lists and adjacency matrices
○ Terminology

● Graph colouring problems: vertex, edge, face colouring
● Breadth-first search

○ With the concept of ‘depth’ to solve vertex colouring
○ Subgraph induced by the predecessors: breadth first tree

● Depth-first search
○ Discovery time and finish time for each vertex
○ Topological sort

● Edge classification: tree edge, back edge, forward edge, cross edge

310

Revision Guide / Summary of Algorithms 2 [2]

● Strongly connected components
○ Two DFSs and the transpose graph

● Shortest path problems:
○ Single-source shortest paths
○ Single-destination shortest paths
○ Single-pair shortest path
○ All-pairs shortest paths

● Complications caused by negative edges, negative cycles, zero-weight cycles
● Bellman-Ford

○ Introduced the concept of edge relaxation
○ Special case for directed acyclic graphs with lower costs

311

Revision Guide / Summary of Algorithms 2 [3]

● Optimal substructure led to Dijkstra’s algorithm
○ Unable to handle negative edge weights
○ Proof of correctness using the convergence lemma

● Matrix multiplication methods for all-pairs shortest paths
○ Mapping domain-specific problems to other theory, to pull in speed-ups from other research
○ Repeated squaring
○ Floyd-Warshall

● Johnson’s algorithm
○ Introduced the concept of reweighting

312

Revision Guide / Summary of Algorithms 2 [4]

● Flow networks
○ Capacity
○ Max-Flow Min-Cut Theorem
○ Ford-Fulkerson (Edmunds-Karp as optimisation)
○ Augmenting paths, flow cancellation

● Bipartite matchings
○ Maximum bipartite matchings (Hopcroft-Karp as an optimisation)
○ Maximum and maximal matchings

● Minimum spanning trees
○ Safe edge theorem
○ Kruskal’s algorithm
○ Prim’s algorithm

313

Revision Guide / Summary of Algorithms 2 [5]

● Amortised analysis
○ Aggregate method
○ Accounting method
○ Potential method

● Mergeable Priority Queues
○ Binomial Heaps
○ Fibonacci Heaps, golden ratio, peculiar property giving them their name

● Disjoint set representations
○ Path compression and union-by-rank

314

Revision Guide / Summary of Algorithms 2 [6]

● Geometric algorithms
○ Simple, planar and closed polygons
○ Defining the inside and outside
○ Winding numbers
○ Line segment intersection problems
○ Cross-product tricks for numerical stability and performance

● Convex Hulls
○ Graham’s scan
○ Jarvis’s March
○ … and I tantalised you with the “Search and Prune” asymptotically optimal method!

315

Thank you for listening!

316

I hope you enjoyed the course.
Please fill in the lecture feedback forms.

Good luck in the exams!

