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Abstract 

Knowledge of how people interact is important in many 
disciplines, e.g. organizational behavior, social network 
analysis, information diffusion and knowledge management 
applications. We are developing methods to automatically 
and unobtrusively learn the social network structures that 
arise within human groups based on wearable sensors. At 
present researchers mainly have to rely on questionnaires, 
surveys or diaries in order to obtain data on physical 
interactions between people. In this paper, we show how 
sensor measurements from the sociometer can be used to 
build computational models of group interactions. We 
present results on how we can learn the structure of face-
to-face interactions within groups, detect when members 
are in face-to-face proximity and also when they are having 
a conversation.    
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1. Introduction 
In almost any social and work situation our decision-

making is influenced by the actions of others around us. 
Who are the people we talk to? How often do we talk to 
them and how long do the conversations last? How actively 
do we participate in those conversations? Answers to these 
questions have been used to understand the success and 
effectiveness of a work group or an organization as a 
whole.  Can we identify the differences between people’s 
interactions? Can we identify the individuals who talk to a 
large fraction of the group or community members? Such 
individuals, often referred to the connectors, have an 
important role in information diffusion [1]. Thus, learning 
the connection structure and nature of communication 
among people are important in trying to understand the 
following phenomena:  (i) diffusion of information (ii) 
group problem solving (iii) consensus building (iv) 
coalition formation etc. Although people heavily rely on 

email, telephone and other virtual means of 
communication, research shows that high complexity 
information is mostly exchanged through face-to-face 
interaction [2]. Informal networks of collaboration within 
organizations coexist with the formal structure of the 
institution and can enhance the productivity of the formal 
organization [3]. Furthermore, the physical structure of an 
institution can either hinder or encourage communication. 
Usually the probability that two people communicate 
declines rapidly with the distance between their work 
locations [2, 4].   

We believe the best way to learn informal networks is 
through observations. We then need to have a mechanism 
to understand how individuals interact with each other from 
these observations. Data-driven approach can augment and 
complement existing manual techniques for data collection 
and analysis.  The goal of our research is twofold – (i) build 
systems and sensors that can play the role of a mythical 
"familiar" that sits perched on a user's shoulder, seeing 
what he sees, with the opportunity to learn what he learns 
(ii) build an algorithmic pipeline that can take these sensors 
data and model the dynamics and interconnections between 
different players in the community.  We hope to lay the 
groundwork for being able to automatically study how 
different groups within social or business institutions 
connect. This will help in understanding how information 
propagates between groups. The knowledge of people’s 
communication networks can also be used in improving 
context-aware computing environments and coordinating 
collaboration between group and community members. 

2. Sensing and Modeling Human 
Communication Networks 

As far as we know, there has been no previous work on 
modeling face-to-face interactions within a community. 
This absence is probably due to the difficulty in obtaining 
reliable measurements from real-world interactions. One 
has to overcome the uncertainty in sensor measurements, 
this is in contrast to modeling virtual communities where 
we can get unambiguous measurements about how people 
interact – the duration and frequency (available from chat 



and email logs) and sometime even detailed transcription of 
interactions [5, 6].  

We believe sensing and modeling physical interactions 
among people is an untapped resource. In this paper, we 
present statistical learning methods that use wearable 
sensor data to make reliable estimates about a user’s 
interaction state (e.g. who is she talking to, how long did 
the conversation last, etc.). We use these results to infer the 
structure/connections that exists in groups of people. This 
can be much cheaper and more reliable than human-
delivered questionnaires. Discovering face-to-face 
communication networks automatically will also allow 
researchers to gather interaction data from larger groups of 
people. This can potentially remove one of the current 
bottlenecks in the analysis of human networks: the number 
of people that can be surveyed using manual techniques. 
Sensor-based approach is free from recall failures and 
personal interpretation bias of surveys. 

Measuring Interactions using the Sociometer 

In this section we describe how we use wearable sensors to 
measure interactions. The first step towards reliably 
measuring communication is to have sensors that can 
capture interaction features. For example, in order to 
measure face-to-face interactions we need to know who is 
talking to whom, the frequency and duration of 
conversations.  

We have conducted an experiment at the MIT Media lab 
where a group of people agreed to wear the sociometer. 
The sociometer is wearable sensor package that measures 
people’s interactions. It is an adaptation of the hoarder 
board, a wearable data acquisition board, designed by the 
electronic publishing and the wearable computing group at 
the Media lab, for details on the hardware design please 
refer to [7, 8]. While designing the sociometer, we put 
special emphasis on the following issues: comfort of the 
wearer, aesthetics, and placement of the sensors. We 
believe these are important points when it comes to greater 
user acceptance and reliable sensor measurements [9]. The 
design of the device follows closely the wearability 
criterion specified in [10], which explores the interaction 
between the human body and a wearable and provides a 
guideline on shape and placement of wearables that are 
unobtrusive and do not interfere with the natural movement 
of the body.  

During the data collection phase, the users had the 
device on them for six hours a day (11AM –5PM) while 
they are on the MIT campus. We performed the experiment 
in two stages – (i) single group stage where 8 subjects from 
the same research group wore the sociometer for 10 days 
(60 hours of data per subject) and (ii) multi-group stage 
where 23 subjects from 4 different research group wore the 
sociometer for 11 days (over two full work weeks and 66 
hours of data per subject). The subjects were a 

representative sample of the community, including 
students, faculty and administrative staff  

The sociometer has an IR transceiver, a microphone, 
two accelerometers, on-board storage, and power supply. 
The wearable stores the data locally on a 256MB compact 
flash card and is powered by four AAA batteries. A set of 
four AAA batteries is enough to power the device for 24 
hours. Everything is packaged into a shoulder mount so that 
it can be worn all day without any discomfort.  

The sociometer stores the following information for 
each individual:  

(i) Information about people nearby (sampling rate  
17Hz – sensor IR) 

(ii) Speech information (8KHz - microphone) 
(iii) Motion information (50Hz - accelerometer)  
 
Other sensors (e.g. light sensors, GPS etc.) can also be 

added in the future using the extension board. For this 
paper we do not use the data obtained from the 
accelerometer. 

 

 

Figure 1 - The wearable sensor board 

 
The success of IR detection depends on the line-of-sight 

between the transmitter-receiver pair. The sociometer has 
four low powered IR transmitters. The use of low powered 
IR transmitters is optimal because (i) we only detect people 
in close proximity as opposed to far apart in a room (as 
with high-powered IR) and (ii) we detect people who are 
facing us and not people all around us (as with RF 
transmitter). The IR transmitters in the sociometer create a 
cone shaped region in front of the user where other 
sociometers can pick up the signal. The range of detection 
is approximately six feet, which is adequate for picking up 
face-to-face communication. The design and mounting of 
the sociometer places the microphone six inches below the 
wearer’s mouth, which enables us to get good audio 
without a headset. The shoulder mounting also prevents 
clothing and movement noise that one often gets from clip-
on microphones. Most of the users were very satisfied with 
the comfortable and aesthetic design of the device. The 
majority made no complaints about any inconvenience or 
discomfort from wearing the device for six hours everyday. 



Despite the comfort and convenience of wearing a 
sociometer, we are aware that subject’s privacy is a concern 
for any study of human interactions. Most people are wary 
about how this information will be used.  To protect the 
user’s privacy we agree only to extract speech features, e.g. 
energy, and spectral features from the stored audio and 
never to process the content of the speech. But, to obtain 
ground truth we need to label the data somehow, i.e. where 
do the conversations occur in the data and who are the 
participants in the conversations. Our proposed solution is 
to use garbled audio instead of the real audio for labeling. 
Garbling the audio by swapping 100ms of consecutive 
audio segments makes the audio content unintelligible but 
maintains the identity and pitch of the speaker [11]. In 
future versions of the sociometer we will store encrypted 
audio instead of the audio, which can also prevent 
unauthorized access to the data. 

 

 

Figure 2 - The shoulder mounted sociometer 

 

Figure 3 Subjects wearing sociometers during 
their daily interactions. 

3. Data Analysis Methods  
The first step in the data analysis process is to find out 

when people are in close proximity.  We use the data from 
the IR receiver to detect proximity of other IR transmitters. 
The receiver measurements are noisy – the transmitted ID 
numbers that the IR receivers pick up are not continuous 
and are often bursty and sporadic. The reason for this 
bursty signal is that people move around quite a lot when 

they are talking, so one person’s transmitter will not always 
be within the range of another person’s receiver. 
Consequently, the receiver will not receive the ID number 
continuously at 17Hz. Also, each receiver will sometimes 
receive its self-ID number. We pre-process the IR receiver 
data by filtering out detection of self ID number as well as 
propagating one IR receiver information to other nearby 
receivers (if receiver #1 detects the presence of tag id #2, 
receiver #2 should also receive tag id #1). This pre-
processing ensures that we maintain consistency between 
different information channels. However, we still need to 
identify continuous chunks of time(an episode) when 
people are in proximity from the bursty receiver 
measurements. Two episodes are separated by contiguous 
time chunk in between where no ID is detected. A hidden 
Markov model (HMM) [12] is trained to learn the pattern 
of IR signal received over time. Typically an HMM takes 
noisy observation data (the IR receiver data) and learns the 
temporal dynamics of the underlying hidden node and its 
relationship to the observation data. The hidden node in our 
case has binary state - 1 when the IDs received come from 
the same episode and 0 when they are from different 
episodes. We hand-label the hidden states by labeling 6 
hours of data. The HMM uses the observation and hidden 
node labels to learn its parameters. We can now use the 
trained HMM to assign the most likely hidden states for 
new observations. From the state labels we can estimate the 
frequency and the duration that two people are within face-
to-face proximity. Figure 4 shows five days of one person’s 
proximity information. Each shade of gray in the sub-image 
identifies a person to whom the wearer is in close proximity 
of and the width is the duration contact. Note that we are 
also able to detect when multiple people are in close 
proximity at the same time. 

 

Figure 4 - Proximity information for person 1. 
Each sub-image shows one day’s information. 
Each row within the sub-image corresponds to a 
different person. HMM which groups the data into 
contiguous time chunks. 

Day 1 

Day 2 

Day 3 

Day 4 

Day 5 



The IR tag can provide information about when people 
are in close face-to-face proximity. But it provides no 
information about whether two people are actually having a 
conversation. They may just have been sitting face-to-face 
during a meeting. In order to identify if two people are 
actually having a conversation we first need to segment out 
the speaker from all other ambient noise and other people 
speaking in the environment. Because of the close 
placement of the microphone with respect to the speaker’s 
mouth we can use simple energy threshold to segment the 
speech from most of the other speech and ambient sounds. 
It is been shown that one can segment speech using voiced 
regions (speech regions that have pitch) alone [13]. In 
voiced regions energy is biased towards low-frequency 
range and hence we use low-energy threshold (2KHz cut 
off) instead of total energy. The output of the low-
frequency energy threshold is passed to another HMM as 
observation, which segments speech regions from non-
speech regions. The two states of the hidden node 
correspond to the speech chunks labels (1 = a speech region 
and 0 = non-speech region). We train our HMM on 10 
minutes of speech where the hidden nodes are again hand 
labeled.  

Figure 5 shows the segmentation results for a 35 second 
audio chunk.  In this example two people wearing 
sociometers are talking to each other and are interrupted by 
a third person (between t=20s and t=30s). The output of 
low frequency energy threshold for each sociometer is fed 
into the speech HMM which segments the speech of the 
wearer. The shaded boxes overlaid on top of the speech 
signal show the segmentation boundaries for the two 
speakers. Also note that the third speaker’s speech in the 
20s-30s region is correctly rejected, as indicated by the 
grayed region in the figure.   

 

Figure 5 - Speech segmentation for the two 
subjects wearing the sociometer.  

Purely energy-based approach to speaker segmentation 
is potentially very susceptible to the noise level of the 

environment and sound from the user’s regular activity. In 
order to overcome this problem we have incorporated 
robust speech features (non-initial maximum of the auto-
correlation, the number of auto-correlation peaks and the 
normalized spectral entropy) proposed in [13]. An HMM 
trained to detect voiced/unvoiced regions using these 
features is very reliable even in noisy environment with 
less than 2% error at 10dB SSNR. However, the downside 
of this is any speech and not just the user’s speech is 
detected. So we use a second stage HMM model on the 
derived features based on energy to segment out only the 
user’s speech and discard all the rest. This method has been 
very effective in our initial experiments  

We now have information about when people are in 
close proximity and when they are talking. When two 
people are nearby and talking, it is highly likely that they 
are talking to each other, but we cannot say this with 
certainty. Results presented by Basu in [14] demonstrate 
that we can detect whether two people are in a conversation 
by relying on the fact that the speech of two people in a 
conversation is tightly synchronized. We reliably detect 
when two people are talking to each other by calculating 
the mutual information of the two voicing streams, which 
peaks sharply when they are in a conversation as opposed 
to talking to someone else. The conversation mutual 
information measure is as follow: 
 

1 2

1 2
1 2

, 1 2

[ ] ( [ ], [ ])

( [ ] , [ ] )
( [ ] , [ ] ) log

( [ ] ) ( [ ] )i j

a k I v t v t k

p v t i v t k j
p v t i v t k j

p v t i p v t k j

= −
= − == = − =

= − =∑  

 
where v1 and v2 are two voicing streams and i and j 

range over 0 and 1 for voiced and unvoiced frames. The 
performance accuracy in detecting conversations was 
63.5% overall and 87.5% for conversations greater or equal 
to one minute. These accuracy numbers were estimated 
from hand labeled data from four subjects, each of them 
labeled two days of their data (12 hours each).  During the 
data collection stage we asked the subjects to fill out a daily 
survey providing a list of their interactions with other 
members. The survey data had 54% agreement between 
subject (where both subjects acknowledged having the 
conversation) and only 29% agreement in the number of 
conversations. 

Once we detect the pair-wise conversation chunks we 
can estimate the duration of conversations. We can further 
break down the analysis and calculate how long each 
person talks during a conversation. We can measure the 
ratio of interaction, i.e. (duration of person A’s 
speech):(duration of person B’s speech). We can also 
calculate what fraction of our total interaction is with 
people in our community, i.e. inter vs. intra community 
interactions. This may tell us how embedded a person is 
within the community vs. how much the person 



communicates with other people. For example, someone 
who never talks to his work group but has many 
conversations in general is very different from someone 
who rarely talks to anyone. 

An initial picture of the network structure can be 
obtained by measuring the duration that people are in close 
face-to-face proximity using the IR sensor data.  Figure 6 
shows the link structure of our network based on duration, 
i.e. the total length of time spent in close proximity. There 
is an arrow from person A to person B if the duration spent 
in close proximity to B accounts for more than 10% of A’s 
total time spent with everyone in the network. The 
thickness of the arrow scales with increasing duration. 
Similarly, Figure 7 shows the link structure calculated 
based on frequency, i.e. the number of times two people 
were in close proximity. We are also in the process of 
combining both the audio and IR tag information and re-
estimating the link the structure. In figures 6-8, data from 
ID4 has not been shown. Although the subject participated 
in the experiment she was absent for a three days and the 
clock on her device failed two other days during the data 
collection. Hence we felt the data from ID4 would not be a 
representative sample of her interaction with others. 

There are a few interesting points to note about 
differences in the structure based on duration vs. frequency.  
The two main differences are that in the frequency network 
there are links between ID #1 and ID # 7 and there are extra 
links connecting ID #6 to many more nodes than the 
duration network.  The additional link to ID # 6 was created 
because person # 6 sat mostly in the common space through 
which every one passed through frequently. Consequently, 
most other receivers often picked up ID # 6, but the 
duration of detection was very short. The links between ID 
1 an ID 7 are also interesting  – although these two people 
never had long discussions they quite often talked for short 
periods of time.   

Figure 8 shows the fraction of time each individual 
spends with other members in the group based on duration 
and frequency. Person 1 talks to all other members 
regularly and is the most connected person as well (see 
Figure 6 and Figure 7). Person 2-6 have more skewed 
distribution in the amount of time they spend with other 
members, which means they interact mostly with a select 
sub-group of people. These are only a few examples of 
looking at different characteristics of the network. Analysis 
along various dimensions of interaction is going to be one 
the main advantage of sensor-based modeling of human 
communication networks.  

 

 

Figure 6 The link structure of the group based on 
duration. 

 

Figure 7 The link structure of the group based on 
frequency 

 

Figure 8 – Interaction distribution based on 
proximity duration (first column) and proximity 
frequency (second column). Each row shows 
results for a different person in the network 



A similar analysis of the larger dataset shows clustering of 
groups and a reduction of interaction with increasing 
physical separation. Subject IDs  2-9 belong to group 1, IDs 
10,12-15 belong to group 2, IDs 16-19 to group 3 and 21-
24 to group 4, IDs 20 and 25 were physically co-located 
with groups 1&2 (no one was assigned ID# 1 or 11). Note, 
that there are few individuals that have broad connections 
across groups (ID 3, 8, and 13)  - this type of individuals 
usually have an important effect on the information flow 
within the community.  

 

Figure 9 The connectivity matrix of interaction 
duration. Each row is a different individual and 
each column depicts the fraction of his/her 
interaction with others. Image(i,j) depicts person 
i’s interaction with person j. Dark region signify 
absence of interaction.  

These connectivity graph or network graph can then be 
used to estimate centrality measures as traditionally done in 
social network analysis. Centrality measures seek to 
quantify an individual’s prominence within a network by 
summarizing the relationships among the different 
individuals in the network. There are different measures of 
centrality e.g. degree, betweenness, eigenvector etc.[15, 
16]. Here we use the eigenvector centrality where the status 
of a person is recursively related to the statuses of the 
people he/she is connected to. If an individual is chosen by 
a popular person it should add to the person’s popularity. If 
A is the adjacency matrix where aij means that I contributes 
to the status of j and x is the vector of centrality score – the 
most general form of eigenvector centrality is: 

1 1 2 2 ...i ni ni ix a x a x a x= + + +                    (1) 

In matrix representation: 
tA x x=                                       (2) 

The eigenvector centrality is the eigenvector of the 
adjacency matrix corresponding to an eigenvalue of 1. 
Normalizing the rows of A to sum to 1 ensures that 

equation 2 is solvable. The eigenvector centrality measure 
for the larger group based on the adjacency matrix is shown 
below (Figure 10), ID 3 and 8 with highest centrality scores 
also are individuals who had most connection across 
groups.  

 

Figure 10 Eigenvector centrality measures of the 
23 individual participating in the larger study 
calculated from proximity data 

4. Conclusion and Future Work 
In this paper, we present a method for analyzing the 

connectivity of interacting groups using data gathered from 
wearable sensors. We have presented initial results from 
our efforts in sensor-based modeling of human 
communication networks. We show that we can 
automatically and reliably estimate when people are in 
close proximity and when they are talking.  We 
demonstrate the advantage of continuous sensing of 
interactions that allows us to measure the structure of 
communication networks along various dimensions – 
duration, frequency, ratio of interaction etc. We also 
present centrality scores for each individuals computed 
automatically from raw sensor data. Centrality measures 
are often used in social network analysis as a measure of 
influence and embeddedness of a person in his/her 
community. In many studies it has been shown that 
topology of people’s connectivity is the most important 
feature and the actual interaction content is not as crucial in 
understanding a person’s role within the community[1, 17-
19]. We are currently obtaining quantitative results for our 
algorithms by comparing the accuracy of our techniques to 
hand-labeled ground truth data of the interactions. We are 
also incorporating our work on modeling the dynamics of 
the network as a whole that will in the future allow us to 
quantitatively measure influences people have on each 
other [20].    
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