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Abstract
The current methods used to mine and analyze tem-
poral social network data make two assumptions: all
edges have the same strength, and all parameters are
time-homogeneous. We show that those assumptions
may not hold for social networks and propose an alter-
native model with two novel aspects: (1) the modeling
of edges as multi-valued variables that can change in in-
tensity, and (2) the use of a curved exponential family
framework to capture time-inhomogeneous properties
while retaining a parsimonious and interpretable model.
We show that our model outperforms traditional models
on two real-world social network data sets.

Introduction
It is becoming increasingly easy to collect data that captures
the real-world social interactions of entire groups of peo-
ple (Wren et al. 2007; Wyatt, Choudhury, and Kautz 2007;
Eagle, Pentland, and Lazer 2009). These new data sets pro-
vide opportunities to study the social networks of people as
they are observed “in the wild,” instead of as they are re-
ported in surveys. And while it is tempting to turn to tra-
ditional methods of social network analysis (SNA), those
methods are often inadequate for behavioral data. Most
existing SNA techniques apply only to static, binary data
(Wasserman and Faust 1994). Social networks derived from
behavioral data will almost always be observed through time
(not in one static snapshot) and will often have finer grained
observations about interactions than simple binary indica-
tors. New techniques are needed that can take into account
multiple tie intensities and the dynamics of a network as it
evolves in time.

Additionally, the few existing works on temporal net-
work models (Robins and Pattison 2001; Guo et al. 2007;
Hanneke, Fu, and Xing 2009) apply a traditional time-
homogeneous approach that assumes that the underlying
properties of a network—e.g. density, transitivity—remain
constant throughout time. We hypothesize that many net-
works will exhibit significant time-inhomogeneity and that
one of the key uses of a temporal network model is to dis-
cover the pattern of that inhomogeneity. For example, net-
works may change their densities or path length distributions
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over time. If we want to maximize the spread of information
or minimize the spread of contagion it would be useful to
know when there will periods of high or low connectivity. A
time-inhomogeneous model can capture such phenomena.

The two key contributions of this paper are (1) a new
method for time-inhomogeneous modeling of dynamic so-
cial networks that allows the underlying network properties
to vary over time while still requiring only a small, fixed
number of parameters; and (2) the extension of existing ex-
ponential random graph models (ERGMs) to account for
edges of multiple intensities. We believe both of these tech-
niques are of central importance to the modeling, mining,
and prediction of automatically collected real-world social
network data. We demonstrate that our model produces bet-
ter fits on two real-world social networks. We also show that
the model discovers interpretable sociological properties of
the populations being modeled. To the best of our knowl-
edge, this is the first implementation of dynamic, multi-
valued ERGMs as well as the first application of them to
behavioral data.

Background and Related Work
In recent decades, a new class of methods for SNA known
as exponential random graph models has been developed
(Frank and Strauss 1986; Wasserman and Pattison 1996;
Robins et al. 2007). ERGMs depart from traditional descrip-
tive models by considering a social network as a realization
of a set of random variables. By considering a distribution
over networks and network statistics (instead of considering
just a single observed value), ERGMs can exploit and un-
derstand any underlying uncertainty in the data.

Given an observed network, an ERGM estimates the pa-
rameters of an exponential family model that describes the
joint distribution of variables used to model that network—
typically one variable per potential edge. The probability
distribution takes the form

p(Y = y) =
1

Zη
e〈η, f(y)〉 (1)

Y are random variables representing edges in the graph, with
a specific realization y in which edge (i, j) takes value yij .
f are feature functions defined on y, and η is a vector of
weights to be learned. 〈η, f(y)〉 denotes the inner product
ηTf(y) =

∑
i ηifi(y) and the model thus has the standard



form of a log-linear combination of parameters and features.
Zη =

∑
y e
〈η, f(y)〉 is the usual normalizing constant.

The features are deterministic functions (or statistics) of
the network. Typical features are counts of subgraph occur-
rences, such as the number of triangles or even simply the
number of edges. The strength of these models lies in their
ability to capture structural dependencies in a probabilistic
manner. Individual properties of the network can then be
interpreted in terms of how changes to them affects the net-
work’s probability.

When represented as an undirected graphical model, an
ERGM has one node in the graphical model for each dyad
in the social network. Edges in the graphical model exist
between variables that occur together in the same feature
function. ERGMs are typically specified by the set of feature
functions employed, and not by an explicit structure for the
graphical model.

Advances in the ability to fit models in the form of (1)
using MCMC (Geyer and Thompson 1992) have also re-
vealed that older ERGM specifications tended to be degener-
ate (Handcock 2003; Snijders 2002). Models are considered
degenerate if only a small set of parameter values lead to
plausible networks. Slight changes in the parameter values
of a degenerate model can cause it to put all of its probability
on almost entire empty or entirely complete networks.

To ameliorate degeneracy, Hunter and Handcock (2006)
proposed using a curved exponential family model. A
curved exponential family places constraints on η that re-
strict its possible values to lie on a non-linear manifold.
In that case, η is redefined as a non-linear function map-
ping a point θ in q-dimensional space to a point η(θ) in p-
dimensional space, where q < p. The points θ ∈ Θ then
define a q-dimensional curved manifold in p-dimensional
space and thus models defined in a such a way are called
curved exponential families (Efron 1978). The model thus
takes the form

p(Y = y) =
1

Zθ
e〈η(θ), f(y)〉 (2)

And the gradient of the log-likelihood is

∂

∂θ
L(θ|y) = ∇η(θ)

T

(
f(y)− E

y

[
f(y)

∣∣θ]) (3)

where ∇η(θ) is the p × q Jacobian of η(θ). The presence
of the Jacobian shows that the log-likelihood is no longer, in
general, convex.

This new formulation, known as curved ERGMs
(CERGMs) has led to better model fits than linear ERGMs
(Hunter and Handcock 2006; Hunter, Goodreau, and Hand-
cock 2008).

Features for CERGMs
The features used for CERGMs can lead to better model fits,
but they also make possible more nuanced sociological in-
terpretations. The simple subgraph counts used as features
in linear ERGMs can lead to model degeneracy, but they of-
ten also do not fully capture the intuitions that motivated the
features.

The models of (Hunter and Handcock 2006) allow en-
tire histograms of statistics to be used as features while still
requiring only a small number of parameters. For exam-
ple, the traditional ERGM feature for capturing transitivity
is the count of all triangles that appear in the network. A
CERGM replaces that count with the edgewise shared part-
ner (ESP) histogram of the network: a vector where com-
ponent i counts the numbers of edges whose endpoints have
exactly i shared partners.

Formally, that means that a span of entries in f , call it fg ,
are the network’s edgewise shared partner histogram. There
is a corresponding portion of η, ηg , that assigns weights to
the bins of fg . The form that ηg has taken in all existing
CERGMs is

ηgi (m, r) = m
(
er(1− (1− e−r)i)

)
(4)

Thus, while an n-node network has n−2 bins in the ESP his-
togram, there are only two free parameters controlling their
weights: m, the usual multiplicative weight, and r, the rate
at which the growth of m in i diminishes. Since that rate
of diminishing increase is geometric, the above combina-
tion of features and constrained parameters is known as ge-
ometrically weighted edgewise shared partners (GWESP).
GWESP models a richer notion of transitivity through its
diminishing increase in weights. A simple feature that
counts triangles (with a single weight) implies that adding
a shared partner always increases log-probability by a con-
stant amount no matter how many shared partners a pair al-
ready has.

Previous Multi-valued and Temporal ERGMs
Robins, Pattison, and Wasserman (1999) first proposed ex-
tending ERGMs to handle discrete multi-valued relations.
Where edges can take one of v values, v new binary indica-
tor variables are introduced per edge. New features are then
defined for this expanded all-binary model. This transfor-
mation is motivated by the fact that a pseudo-likelihood fit
(Strauss and Ikeda 1990) can be then be found using exist-
ing logistic regression software. Our model avoids the need
for such a conversion by simply defining features over the
multi-valued edge variables directly.

Robins and Pattison (2001) proposed the first temporal
ERGM by defining the probability of a sequence of just two
observed networks, y1 and y2, as

p(y1,y2) = p(y2)p(y2|y1) (5)

=
1

Zη1

e〈η
1, f1(y1)〉×

1

Zη2,y1

e〈η
2, f2(y2,y1)〉

(6)

Robins and Pattison test this model on a two-step data set,
fitting it using pseudo-likelihood. They explain that their
model could be extended to longer sequences y1, . . . ,yT if
a time-homogeneity assumption is made.

Recently, Hanneke, Fu, and Xing (2009) applied the
model of Robins and Pattison to longer network sequences



by making exactly such an assumption. In the model pro-
posed by Hanneke, Fu, and Xing the probability of a se-
quence of T networks is

p(y1, . . . ,yT ) = p(y1)

T∏
t=2

p(yt|yt−1) (7)

=
1

Zηs

e〈ηs, fs(y
1)〉×

T∏
t=2

1

Zη,yt−1

e〈ηs, fs(y
t)〉+〈ηd, fd(y

t,yt−1)〉

(8)

In this model the features and their associated parameters
have been divided into two sets: static features fs that only
consider variables within one timestep and dynamic features
fd that consider variables across two timesteps. The time-
homogeneity assumption is expressed in the use of the same
ηs and ηd for all timesteps.

Hanneke, Fu, and Xing also restrict their model to use
only dyad-independent static features and dynamic features
that can be decomposed as

fd(yt,yt−1) =
∑
ij

fij(y
t
ij ,y

t−1) (9)

They show that the restriction in (9) helps the model avoid
degeneracy. Additionally, they show that using only dy-
namic features of the form in (9) in a distribution that condi-
tions on the first observation (i.e. removing the p(y1) factor
in (7)) ensures that the (conditional) log-likelihood gradient
can be computed exactly. Such conditioning may be prob-
lematic, though, since the initial state may not represent the
network at equilibrium. Indeed, Hanneke, Fu, and Xing ex-
plain that they have to discard the first few observations from
their data since they seem to be outliers when compared to
later observations.

Multi-valued Time-Inhomogeneous Dynamic
Exponential Random Graph Models

The fact that observations from one part of a sequence
seem very different from observations from a later part of
the same sequence motivates our model. We hypothesize
that most social networks will display this sort of time-
inhomogeneity1 at the scales we would like to model them
at. We use the curved exponential framework to define a
model capable of capturing changes in the underlying prop-
erties of the network—not just changes in the values of
variables—while still requiring only a fixed set of parame-
ters. In addition to that, we redefine existing ERGM features
so that they apply to multi-valued edges.

1Note that time-inhomogeneity is different from non-
stationarity. A homogeneous process is one whose parameters do
not change over time and it always has at least one stationary dis-
tribution. An inhomogeneous process can ensure that there is no
stationary distribution and may therefore be more suitable for tem-
poral processes whose properties evolve over time.

Multi-Valued CERGMs
Our model allows edges to take one of v discrete, ordinal
values. These values represent the observed intensity of a
social tie. Larger values indicate a stronger tie. To per-
mit comparisons with binary-valued models, the values are
scaled so that the smallest is 0 and the largest is 1. Many
simple network statistics can be redefined for this model in
a straightforward manner: the density of a network is the
sum of its edge values; a node’s degree is the sum of the
values of the edges incident to that node.

More complicated features that involve subgraphs require
defining the intensity of a subgraph. For that, we use the
geometric mean of the edge values composing the subgraph.
For example, a shared partner k for nodes i and j is defined
to be a partner of intensity (yikyjk)

1
2 , where yij represents

the multi-valued edge between nodes i and j. The count of
shared partners for a pair, SPij is the sum of these intensi-
ties:

SPij ,
∑
k

(yikyjk)
1
2 (10)

To model edgewise shared partners we take the product of
an edge’s value with its shared partner sum:

ESPij , yijSPij (11)

Note that if v = 2 and all edge values are either 0 or 1,
then our features are equivalent to the traditional CERGM
features.

Time-Inhomogeneous Dynamic CERGMs
For a time-homogeneous model such as (8) with s static fea-
tures and d dynamic features, a feature vector of length s+d
can be computed for each pair of adjacent timesteps. Time-
homogeneity allows all of these vectors to be summed into a
single vector (clearly also of length s + d) that summarizes
the entire sequence. By doing that, (8) can be rewritten as

p(y1, . . . ,yT ) =
1

Zηs

e〈ηs, fs(y
1)〉 × 1

ZT
×

e〈ηs,
∑T

t=1 fs(y
t)〉+〈ηd,

∑T
t=2 fd(y

t,yt−1)〉
(12)

where ZT =
∏T

t=2 Zη,yt−1 .
For our time-inhomogeneous model we compute the same

set of features for each timestep but keep their values sepa-
rate and allow each timestep to have its own set of parame-
ters:

p(y1, . . . ,yT ) =
1

Zη1
s

e〈η
1
s, fs(y

1)〉×

T∏
t=2

1

Zηt
s,y

t−1

e〈η
t
s, fs(y

t)〉+〈ηt
d, fd(y

t,yt−1)〉

(13)

Thus the feature vector for the entire sequence is of length
T (s + d) and the feature output for time t begins at index
[(t − 1)(s + d) + 1] in f . For example, consider a model
that includes a single feature: network density. The density



of each yt is computed and placed at index t in the feature
vector. The resulting vector is the sequence of densities as
the network evolves through time. Clearly, the longer the
sequence gets, the longer its feature vector gets.

However, by leveraging the functional form of η in a
curved exponential family we can keep the number of pa-
rameters fixed. And by choosing a flexible form for η we
can smooth away short term variations in the data to dis-
cover long range patterns of change over time.

Note that not only does having separated features per
timestep allow for time-inhomogeneity, it also allows—with
properly defined transition features—for irregularly spaced
observations. When observing a real-world social network
it is likely that observations may not appear regularly.

Additionally, it is possible to model time-inhomogeneity
through time-varying features (e.g. by defining separate
f t(yt) for each timestep). However, by using the parame-
ters to model time-inhomogeneity it is possible to learn the
form of that inhomogeneity from the data instead of having
to specify it in advance through a fixed set of feature func-
tions.

Features and Parameter Constraints
The models we employ in this paper use different combi-
nations of three features: (i) the edge value histogram, (ii)
network anti-stability, and (iii) GWESP.

The edge value histogram is the simple vector of counts
of how many edges take each of the v discrete values. One
value (the highest) is excluded to avoid having a linear de-
pendency among the features.

Network anti-stability, a(yt′ ,yt), is the amount that each
edge changes its value between observations:

a(yt′ ,yt) ,
∑
ij

(yt
′

ij − ytij)2

t′ − t
(14)

where t′ > t and there is no other observed timestep be-
tween t′ and t (thus implying a Markov property). Note that
t′ need not be t + 1 (and frequently is not in our evalua-
tions) and this feature is still capable of modeling irregu-
larly spaced observations. Dividing by t′ − t makes (14)
equivalent to modeling the change in an edge’s value (when
all other features are held constant) as a discrete time ran-
dom walk with step sizes drawn from a Gaussian. The mean
of that Gaussian is zero, and its variance will be inversely
proportional to the negative of the weight learned for this
feature.

GWESP is as it is defined in (11) with the parameter con-
straint defined in (4). It models the network’s tendency to-
wards transitivity.

All three of these features are strictly “local” in nature.
This captures the intuition that social ties are formed through
local decisions without access to global network properties.

The parameter constraints for the edge value histograms,
the anti-stability sums, and the multiplicative weight m for
GWESP are all constrained to follow a sigmoid with offset:

ηtfk(wk, ak, bk, sk) , wk

(
1

1 + e−(ak+bkt)
+ sk

)
(15)

This equation is analogous to (4): ηtfk are the weights for
some feature fk and the weights change in a constrained way
over time. Specifically, wk is the ordinary multiplicative
weight for feature k. That weight is scaled by the logistic
with parameters ak and bk. Since the logistic will only take
values between 0 and 1, the offset parameter sk shifts it up
or down, allowing it to cross zero. Features with a positive
weight make the data more likely as they increase in value
and those with a negative weight make the data less likely as
they increase in value. If the learned sigmoid crosses zero
at some time, it means that the model has found a point at
which a feature has shifted between helpful and harmful for
the network.

Note that what previously would have been one parame-
ter, wk, in a time-homogeneous model is now 4 parameters
in our time-inhomogeneous model. That is the cost of the
increased flexibility provided, but it is fixed: the number of
parameters stays the same no matter how long the data se-
quence is.

Any number of functions could have been chosen to
model time-inhomogeneity. We chose the sigmoid for 3 rea-
sons. First, the networks we consider are observed within
bounded “episodes” for their respective populations (one
academic year, one senate session). We want to see if there
is a shift from one underlying regime to another, e.g. from
low transitivity to high. Second, the logistic has an asymp-
totic bound. With 4 parameters we could have used a de-
gree 3 polynomial, but that would grow infinitely as time in-
creased. An asymptotic function is more plausibly extended
into the future. Third, while the logistic is defined for all
real values of t, in our specification t will always be positive
and will be effectively bounded by some maximum T . The
a and b parameters allow the sigmoid to be shifted left and
right, so it is free to only decrease or only increase. It can
also stay constant if there is no time-inhomogeneity present
in the data.

Evaluation
We test our model on two real-world social network data
sets. First, a simple model applied to data from the U.S. Sen-
ate illustrates the basic advantages of a time-inhomogeneous
approach. Then we apply a more complex model to a corpus
of face-to-face conversations and use the model to discover
basic properties of the conversational network.

In both data sets we quantize continuous edge values to
v discrete values. All zero values are left at zero and all
non-zero values are quantized to v − 1 discrete points us-
ing k-means. The quantized values are then normalized so
that the maximum value is 1. We also experimented with
equally-spaced and equally-weighted binning schemes but
found that the non-uniform binning provided by k-means
produced the best model fits. For the senate data, v = 5
and for the conversation data v = 10. (Initial experiments
showed that the model was robust across larger values of v
(Wyatt, Choudhury, and Bilmes 2009).)

To learn the parameters we first use pseudo-likelihood to
find a starting point and then use Gibbs sampling to approx-
imate the expectation in (3). Despite their non-convexity,
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Figure 1: Density of senate networks with best fit values from time-
homogeneous Markov chains and a time-inhomogeneous density
model.

BFGS has been successfully used for learning CERGMs
(Hunter et al. 2008) and we use it as well.

Senate Data
The senate data comes from (Fowler 2006) and is the same
population from which Hanneke, Fu, and Xing (2009) dis-
card observations that they considered outliers. The data
captures the cosponsorship network of senators in the 108th
United States Senate. When a bill (or resolution or amend-
ment, all referred to as “bills” here) is proposed in the U.S.
Senate it must be sponsored by one senator. Additional sen-
ators may sign on as co-sponsors of the bill any time before
the senate votes on the bill.

We divide the senate data into sliding windows that are
28 calendar days long with 7 calendar day offsets. If the
senate is not in session for more than 28 calendar days in a
row we include no measurement for that period. After such
a gap, the next window starts at the soonest date the sen-
ate is in session. From each window we build an undirected
cosponsorship network by adding edges between two sena-
tors if one cosponsored the other’s bill during that window.
The strength of the edge is the number of bills cosponsored
during the window, normalized by the number of days in ses-
sion within the window (which adjusts for small variations
due to e.g. 3 day weekends).

Figure 1 shows that the network’s density is clearly time-
varying. We fit the simplest of our models to this data: one
that includes only the edge value histogram feature. Since
the edges histogram feature assumes all edges are indepen-
dent, the gradient for this model can be computed exactly
as can its predicted networks. The green line in Figure 1
shows the expected density of the network as predicted by
our model over time. With v = 5 this model has 16 param-
eters.

The red lines in Figure 1 represent prediction from a time-
homogeneous Markov chain that learns a complete v × v
transition matrix (and thus has 20 parameters). Each red
line shows the expected density of a separate chain run for-
ward from every observed data point. As is to be expected,
the chains quickly converge to their stationary distribution.

But that distribution is not near the data: the root mean
square error for the Markov chain is 87, but for the time-
inhomogeneous model it is only 45.

Conversation Data
The second dataset we use is one that captures the face-to-
face conversations between a cohort of incoming graduate
students. We recruited a group of 24 (out of 27) first-year
graduate students from the same department at a large uni-
versity (Wyatt, Choudhury, and Kautz 2007). For one week
per month, over the 9 months of an academic year, the stu-
dents wore microphones connected to a wearable computer.
No raw audio was ever saved. Instead, the computer ex-
tracted a set of privacy-sensitive features in real-time. After
recording is complete, the resulting streams of features are
combined and we can automatically find face-to-face con-
versations in them with accuracies ranging from 96% to 99%
(Wyatt, Choudhury, and Bilmes 2007).

We divide this data into 2 day long windows with a sliding
offset of 1 day. Due to academic calendar fluctuations (and
a technical issue after the 3rd week) the recording weeks do
not all start at evenly spaced intervals. A network is built
from each window by putting an edge between two students
if they spent time in conversation during the window. The
edge weight is set to the proportion of time in conversation:
the amount of time that the pair spent in conversation di-
vided by the amount of time that both members of the pair
simultaneously recorded.

The model we apply to this data includes all three features
described above: edge value histograms, anti-stability, and
GWESP. We fit both a time-inhomogeneous model that uses
sigmoid constraints on the weights and a time-homogeneous
model that learns the same weights for all timesteps. To test
the models we simulate entire sequences of networks from
them.

For the time-inhomogeneous model we provide only the
time indexes at which it should generate networks. For the
time-homogeneous model we provide both the time indexes
for which it should generate networks, as well as the true
first network observation—thus giving it potentially more
information about the network series.

We use Gibbs sampling to generate sample sequences,
with a burn in of 1000 sweeps over all variables and sub-
sequent samples saved every 100 sweeps. We compare
the simulated sequences to the data using more features
than just those in the model. Such comparisons will eas-
ily show whether a model is degenerate (Hunter, Goodreau,
and Handcock 2008).

Figure 2 shows the density of the conversation networks
along with the densities of networks sampled from the two
models. On the top, in red, the time-homogeneous model
shows a very poor fit to the data. The extreme samples that
extend beyond the plot’s limits show that the model is ex-
hibiting degeneracy and assigning significant probability to
completely connected graphs. In fact, if we sample from
this model without conditioning it on the first observation it
only returns sequences of graphs with all edges set to or near
their maximum value. The time-inhomogeneous model on
the bottom, in green, shows a much better fit to the data.
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Figure 2: Density of sampled networks compared to data.
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Figure 3: Mean path length of sampled networks compared to data.

Figure 3 shows mean path lengths. To compute path
lengths, every non-zero edge yij has its value replaced with
1 − yij so that shorter paths travel across stronger edges.
Path length is a global property of the network and thus
is not directly modeled by our strictly local set of features.
Good reproduction of global properties is evidence of good
model fit (Hunter, Goodreau, and Handcock 2008). Again,
the time-homogeneous model (top) shows a poor fit to the
data and exhibits degeneracy by generating many maximally
connected networks with all paths at length zero. The time-
inhomogeneous model (bottom) provides a much better fit.

What Didn’t Work Before arriving at the above features
we also tried two others. Simple density—the sum of all
edge values—yielded networks with very low total densities
and was replaced with the edge value histograms. A raw tri-
angles count defined asD ,

∑
ijk(xijxikxjk)

1
3 and a “poor

man’s GWESP” of log(1 +D) both lead to degeneracy.
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Figure 4: Edge value probabilities over time, with all other features
kept equal. Values increase from 0 at bottom to 1 at top. Note that
y axis starts at 0.5.
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Figure 5: Estimated GWESP weight, with additional weights
drawn from its nominal sampling distribution.

Interpreting the Model Once an ERGM has been fit to
data, its parameters can be interpreted to provide insight into
the process that generated the network. A linear ERGM is
easiest to interpret: a parameter’s value is the log-odds of a
unit increase in that feature. Features like GWESP are also
fairly interpretable. The curve defined in (4) shows the log-
odds of an edge having i shared partners and the smooth
curve shows the rate at which the log-odds diminishes in
i. The same is true of our time-inhomogeneous parameters.
Since the edge histograms are simple multinomials, we can
convert their parameters from canonical to mean-value form
and view them as the probability that an edge takes a given
value at a given time, with all other features held equal.

Figure 4 shows such edge value probabilities for the con-
versation networks. In the beginning, strong edges (top)
have larger probability than others. In the middle, weak
edges become more probable, and eventually zero-valued
edges (bottom) increase their dominance.

Of course, there is the usual uncertainty associated with
the single set of parameters learned by the model. Fortu-
nately, curved exponential families still allow for the Fisher
information to be used to estimate standard errors around



Table 1: Sigmoid parameter values learned for GWESP weight.

Parameter Value s.e

w -2.24 1.17
a -0.09 0.95
b -0.19 0.05
s -0.14 0.07

learned parameter values (Hunter and Handcock 2006). Ta-
ble 1 shows the parameter values (from (15)) learned for the
GWESP weight in the conversation data, along with their
nominal standard errors. Unfortunately, as η becomes more
complex, standard errors around a learned θ̂ become harder
to reason about. We can get a coarse feel for the uncer-
tainty, though, by sampling new parameter values from the
nominal asymptotic normal sampling distribution of θ̂. We
can then feed those sampled parameters through η to see
how different θ̂ values might effect our interpretation of the
model. Figure 5 shows such samples for the learned GWESP
weight. The MLE (the output of (15) for the values in Ta-
ble 1) is in solid black and the gray lines are weights com-
puted from sampled values of θ̂. The sampled values follow
the general form of the point estimate and all suggest that in
this network transitivity quickly increases in importance and
then stays important.

Conclusion and Future Work
We have shown that traditional time-homogeneous models
may not be best for modeling sequences of social networks
and that time-inhomogeneous variants of them can perform
better. We have also shown a way that existing CERGM fea-
tures can be successfully extended to multi-valued networks
that arise naturally in temporal network data.

Temporal network modeling is in its infancy and there
are many additional avenues to explore. We can add dy-
namic structural features, like transitivity over time; we can
try different parameter constraint functions; we can incor-
porate the other streams of observations that come with the
new kinds of network data like conversational styles, physi-
cal activity, and location. The future work is immense.
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