Skip to main content

Well-Posedness, Stability and Conservation for a Discontinuous Interface Problem: An Initial Investigation

  • Conference paper
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 106))

  • 1441 Accesses

Abstract

A robust interface treatment for the discontinuous coefficient advection equation satisfying time-independent jump conditions is presented. The aim of the investigation is to show how the different concepts like well-posedness, conservation and stability are related. The equations are discretized using high order finite difference methods on Summation By Parts (SBP) form. The interface conditions are weakly imposed using the Simultaneous Approximation Term (SAT) procedure. Spectral analysis and numerical simulations corroborate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (China (P.R.))
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (China (P.R.))
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (China (P.R.))
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (China (P.R.))
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.H. Carpenter, D. Gottlieb, S. Abarbanel, Time-stable boundary conditions for finite difference schemes solving hyperbolic systems: methodology and applications to high-order compact schemes. J. Comput. Phys. 129, 220–236 (1994)

    Article  MathSciNet  Google Scholar 

  2. M.H. Carpenter, J. Nordström, D. Gottlieb, A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. M.H. Carpenter, J. Nordström, D. Gottlieb, Revisiting and extending interface penalties for multi-domain summation-by-parts operators. J. Sci. Comput. 45, 118–150 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Gong, J. Nordström, Interface procedures for finite difference approximations of the advection-diffusion equation. J. Comput. Appl. Math. 236(5), 602–620 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Gustafsson, H.O. Kreiss, A. Sundström, Stability theory of difference approximations for mixed initial boundary value problems, II. Math. Comput. 26(119), 649–686 (1972)

    Article  MATH  Google Scholar 

  6. J.E. Kozdon, E.M. Dunham, J. Nordström, Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. J. Sci. Comput. 55(1), 92–124 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. H.O. Kreiss, Stability theory of difference approximations for mixed initial boundary value problems, I. Math. Comput. 22(104), 703–714 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  8. C. La Cognata, J. Nordström, Well-Posedness, Stability and Conservation for a Discontinuous Interface Problem. LiTH-MAT-R–2014/16–SE, Department of Mathematics, Linköping University, 2014

    Google Scholar 

  9. K. Mattsson, J. Nordström, High order finite difference methods for wave propagation in discontinuous media. J. Comput. Phys. 200, 249–269 (2006)

    Article  Google Scholar 

  10. K. Mattsson, M. Svärd, J. Nordström, Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Nordström, R. Gustafsson, High order finite difference approximations of electromagnetic wave propagation close to material discontinuities. J. Sci. Comput. 18(2), 214–234 (2003)

    Article  Google Scholar 

  12. J. Nordström, J. Gong, E. Van der Weide, M. Svärd, A stable and conservative high order multi-block method for the compressible Navier-Stokes equations. J. Comput. Phys. 228(24), 9020–9035 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Strand, Summation by parts for finite difference approximation for d/dx. J. Comput. Phys. 110(1), 47–67 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Svärd, J. Nordström, Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina La Cognata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

La Cognata, C., Nordström, J. (2015). Well-Posedness, Stability and Conservation for a Discontinuous Interface Problem: An Initial Investigation. In: Kirby, R., Berzins, M., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Lecture Notes in Computational Science and Engineering, vol 106. Springer, Cham. http://doi.org/10.1007/978-3-319-19800-2_11

Download citation

Publish with us

Policies and ethics