Skip to main content

A Bond Order Dissection ANOVA Approach for Efficient Electronic Structure Calculations

  • Chapter
  • First Online:
Extraction of Quantifiable Information from Complex Systems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 102))

  • 1290 Accesses

  • 1 Citation

Abstract

In this article, we present a new decomposition approach for the efficient approximate calculation of the electronic structure problem for molecules. It is based on a dimension-wise decomposition of the space the underlying Schrödinger equation lives in, i.e. \(\mathbb{R}^{3(M+N)}\), where M is the number of nuclei and N is the number of electrons. This decomposition is similar to the ANOVA-approach (analysis of variance) which is well-known in statistics. It represents the energy as a finite sum of contributions which depend on the positions of single nuclei, of pairs of nuclei, of triples of nuclei, and so on. Under the assumption of locality of electronic wave functions, the higher order terms in this expansion decay rapidly and may therefore be omitted. Furthermore, additional terms are eliminated according to the bonding structure of the molecule. This way, only the calculation of the electronic structure of local parts, i.e. small subsystems of the overall system, is necessary to approximate the total ground state energy. To determine the required subsystems, we employ molecular graph theory combined with molecular bonding knowledge. In principle, the local electronic subproblems may be approximately evaluated with whatever technique is appropriate, e.g. HF, CC, CI, or DFT. From these local energies, the total energy of the overall system is then approximately put together in a telescoping sum like fashion. Thus, if the size of the local subproblems is independent of the size of the overall molecular system, linear scaling is directly obtained. We discuss the details of our new approach and apply it to both, various small test systems and interferon alpha as an example of a large biomolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (China (P.R.))
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (China (P.R.))
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (China (P.R.))
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 49.99
Price excludes VAT (China (P.R.))
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Ultimately, the aim would be a decomposition of \(\mathbb{R}^{3(M+N)}\), the space where the full Schrödinger equation lives in.

  2. 2.

    Note however that our approach should work equally well also in the non-charge neutral case.

  3. 3.

    The ratio of the velocity v K of a nucleus to the velocity of an electron v e is in general smaller than 10−2.

  4. 4.

    This excludes in general metallic systems, whose electrons may be delocalized due to a vanishing band gap.

  5. 5.

    Furthermore, the notion of the locality of the wave function is important as it leads to the general chemical understanding of molecules from the general bond structure up to nucleophilic sites.

  6. 6.

    The ANOVA decomposition of a M-dimensional function \(f: [0, 1]^{M} \rightarrow \mathbb{R}\) reads \(f =\sum _{u\subseteq \{1,\ldots,M\}}f_{u}\) with f u depending only on the variables indicated in u. The functions f u satisfy the recurrence relation \(f_{\varnothing } = L_{\{1,\ldots,M\}}(f)\), \(f_{u} = L_{\{1,\ldots,M\}/u}(f) -\sum _{v\subset u}f_{v}\) with \(L_{w}(f) =\int _{[0,1]^{\vert w\vert }}f(x_{1},\ldots,x_{M})\,dx_{w}\). Thus, f is decomposed into a constant, a sum of one-dimensional functions, a sum of two-dimensional functions, and so on. The involved functions are generated by proper partial integration and telescopic corrections according to the recurrence relation.

  7. 7.

    Note that, in practice, the global electronic problem is only solved approximately anyway, by e.g. DFT, CC, CI.

  8. 8.

    As can be seen from Fig. 11.4, the fragmentation times are negligible.

References

  1. Abell, G.C.: Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31(10), 6184–6196 (1985)

    Article  Google Scholar 

  2. Amovilli, A., Cacelli, I., Campanile, S., Prampolini, G.: Calculation of the intermolecular energy of large molecules by a fragmentation scheme: application to the 4-n-pentyl-4-cyanobiphenyl (5CB) dimer. J. Chem. Phys. 117, 3003–3012 (2002)

    Article  Google Scholar 

  3. Antes, I., Thiel, W.: Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J. Phys. Chem. A 103(46), 9290–9295 (1999)

    Article  Google Scholar 

  4. Arnold, A., Bolten, M., Dachsel, H., Fahrenberger, F., Gähler, F., Halver, R., Heber, F., Hofmann, M., Holm, C., Iseringhausen, J., Kabadshow, I., Lenz, O., Pippig, M., Potts, D., Sutmann, G.: Comparison of scalable fast methods for long-range interactions. Phys. Rev. E 88(6), 063,308 (2013)

    Article  Google Scholar 

  5. Ayala, P.Y., Scuseria, G.E.: Linear scaling second-order Moeller-Plesset theory in the atomic orbital basis for large molecular systems. J. Chem. Phys. 110(8), 3660–3671 (1999)

    Article  Google Scholar 

  6. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank (2000). http://www.pdb.org/

  7. Brenner, D.W.: A second-generation reactive bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 14, 783–802 (2002)

    Google Scholar 

  8. Challacombe, M.: A simplified density matrix minimization for linear scaling self-consistent field theory. J. Chem. Phys. 110, 2332–2342 (1999)

    Article  Google Scholar 

  9. Collins, M.A., Deev, V.A.: Accuracy and efficiency of electronic energies from systematic molecular fragmentation. J. Chem. Phys. 125, 104,104 (2006)

    Article  Google Scholar 

  10. Csyani, G., Albaret, T., Payne, M.C., De Vita, A.: Learn on the fly: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93(17), 175,503 (2004)

    Google Scholar 

  11. Daw, M.S., Baskes, M.I.: Embedded-atom method: derivation and application to impurities, surfaces and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)

    Article  Google Scholar 

  12. Deev, V., Collins, M.A.: Approximate ab initio energies by systematic molecular fragmentation. J. Chem. Phys. 122(15), 154,102 (2005)

    Google Scholar 

  13. Ercolessi, F., Adams, J.B.: Interatomic potentials from 1st-principles calculations – the force-matching method. Europhys. Lett. 26(8) 583–588 (1994)

    Article  Google Scholar 

  14. Fonseca Guerra, C., Snijders, J.G., te Velde, G., Baerends, E.J.: Towards an order-N DFT method. Theor. Chem. Acc. 99(6), 391–403 (1998)

    Google Scholar 

  15. Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71(4), 1085–1123 (1999)

    Article  Google Scholar 

  16. Greengard, L., Rokhlin, V.: The fast multipole method for gridless particle simulation. Comput. Phys. Commun. 48, 117–125 (1988)

    Article  Google Scholar 

  17. Gresh, N., Claverie, P., Pullman, A.: Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison with ab-initio SCF computations. Theor. Chim. Acta 66, 1–20 (1984)

    Google Scholar 

  18. Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dynamics – Numerics, Algorithms, Parallelization, Applications. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  19. Hayes, M.Y., Li, B., Rabitz, H.: Estimation of molecular properties by high-dimensional model representation. J. Phys. Chem. 110, 264–272 (2006)

    Article  Google Scholar 

  20. Heber, F.: Ein systematischer, linear skalierender Fragmentansatz für das Elektronenstukturproblem. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2014)

    Google Scholar 

  21. Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19(3), 293–325 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  22. Humphrey, W., Dalke, A., Schulten, K.: VMD – visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  23. Janssen, C.L., Nielsen, I.B., Leininger, M.L., Valeev, E.F., Kenny, J.P., Seidl, E.T.: The Massively Parallel Quantum Chemistry Program (MPQC), Version 2.3.0. Sandia National Laboratories, Livermore (2008). http://www.mpqc.org/

  24. Johnson, R.D., III: NIST computational chemistry comparison and benchmark database, NIST Standard Reference Database Number 101 (2006). http://srdata.nist.gov/cccbdb

  25. Kitaura, K., Ikeo, E., Asada, T., Nakano, T., Uebayasi, M.: Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett. 313, 701–706 (1999)

    Article  Google Scholar 

  26. Laio, A., Van de Vondele, J., Rothlisberger, U.: A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations. J. Comput. Chem. 116(16), 6941–6947 (2002)

    Google Scholar 

  27. Li, X.P., Nunes, R.W., Vanderbilt, D.: Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B 47, 10,891–10,894 (1993)

    Article  Google Scholar 

  28. Liu, W.K., Karpov, E.G., Zhang, S., Park, H.S.: An introduction to computational nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 193, 1529–1578 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Marx, D., Hutter, J.: Ab initio molecular dynamics: theory and implementation. In: Modern Methods and Algorithms of Quantum Chemistry. NIC Series, vol. 1, pp. 301–440. Forschungszentrum Juelich, Deutschland (2000)

    Google Scholar 

  30. Maseras, F., Morokuma, K.: IMOMM – a new integrated ab-initio plus molecular mechanics geometry optimization scheme of equilibrium structures and transition-states. J. Comput. Chem. 16(9), 1170–1179 (1995)

    Article  Google Scholar 

  31. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford Science Publications, New York (1989)

    Google Scholar 

  32. Ponder, J.W., Case, D.A.: Force fields for protein simulation. Adv. Protein Chem. 66, 27–85 (2003)

    Article  Google Scholar 

  33. Sauer, J., Sierka, M.: Combining quantum mechanics and interatomic potential functions in ab initio studies of extended systems. J. Comput. Chem. 21(16), 1470–1493 (2000)

    Article  Google Scholar 

  34. Skylaris, C.K., Haynes, P.D., Mostofi, A.A., Payne, M.C.: Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122(8), 84,119 (2005)

    Article  Google Scholar 

  35. Szabo, A., Ostlund, N.S.: Modern Quantum Theory – Introduction to Advanced Electronic Structure Theory. Dover, New York (1996)

    Google Scholar 

  36. Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566–5568 (1989)

    Article  Google Scholar 

  37. Van der Vaart, A., Gogonea, V., Dixon, S.L., Merz, K.M., Jr.: Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method. J. Comput. Chem. 21(16), 1494–1504 (2000)

    Article  Google Scholar 

  38. Velde, G.T., Bickelhaupt, F.M., Baerends, E.J., Guerra, C.F., Van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22(9), 931–967 (2001)

    Article  Google Scholar 

  39. Vreven, T., Morokuma, K.: On the application of the IMOMO (integrated molecular orbital + molecular orbital) method. J. Comput. Chem. 21(16), 1419–1432 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the priority program SPP1324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Griebel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griebel, M., Hamaekers, J., Heber, F. (2014). A Bond Order Dissection ANOVA Approach for Efficient Electronic Structure Calculations. In: Dahlke, S., et al. Extraction of Quantifiable Information from Complex Systems. Lecture Notes in Computational Science and Engineering, vol 102. Springer, Cham. http://doi.org/10.1007/978-3-319-08159-5_11

Download citation

Publish with us

Policies and ethics