Skip to main content

A Quasi-optimal Sparse Grids Procedure for Groundwater Flows

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 95))

  • 1938 Accesses

  • 12 Citations

Abstract

In this work we explore the extension of the quasi-optimal sparse grids method proposed in our previous work “On the optimal polynomial approximation of stochastic PDEs by Galerkin and Collocation methods” to a Darcy problem where the permeability is modeled as a lognormal random field. We propose an explicit a-priori/a-posteriori procedure for the construction of such quasi-optimal grid and show its effectiveness on a numerical example. In this approach, the two main ingredients are an estimate of the decay of the Hermite coefficients of the solution and an efficient nested quadrature rule with respect to the Gaussian weight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (China (P.R.))
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (China (P.R.))
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (China (P.R.))
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (China (P.R.))
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Arbogast, M. F. Wheeler, and I. Yotov. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal., 34(2):828–852, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Review, 52(2):317–355, June 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math., 12(4):273–288, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bear and A.H.D. Cheng. Modeling Groundwater Flow and Contaminant Transport. Theory and Applications of Transport in Porous Media. Springer, 2010.

    Book  MATH  Google Scholar 

  5. J. Beck, F. Nobile, L. Tamellini, and R. Tempone. On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Mathematical Models and Methods in Applied Sciences, 22(09), 2012.

    Google Scholar 

  6. F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.

    Google Scholar 

  7. H.J Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.

    Google Scholar 

  8. C.G. Canuto, Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods: Fundamentals in Single Domains. Springer, 2006.

    Google Scholar 

  9. J. Charrier. Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal., 50(1), 2012.

    Google Scholar 

  10. J. Galvis and M. Sarkis. Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. SIAM J. Numer. Anal., 47(5):3624–3651, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Genz and B. D. Keister. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math., 71(2), 1996.

    Google Scholar 

  12. T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Computing, 71(1):65–87, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. J. Gittelson. Stochastic Galerkin discretization of the log-normal isotropic diffusion problem. Math. Models Methods Appl. Sci., 20(2):237–263, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces for operator equations. Math. Comp., 78(268):2223–2257, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Grigoriu. Stochastic Calculus: Applications in Science and Engineering. Birkhäuser Boston, 2002.

    Google Scholar 

  16. V. H. Hoang and C. Schwab. N-term galerkin wiener chaos approximations of elliptic pdes with lognormal gaussian random inputs. SAM-Report 2011–59, ETHZ, 2011.

    Google Scholar 

  17. A. S. Kronrod. Nodes and weights of quadrature formulas. Sixteen-place tables. Authorized translation from the Russian. Consultants Bureau, New York, 1965.

    Google Scholar 

  18. H. Li and D. Zhang. Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods. Water Resources Research, 43(9), 2007.

    Google Scholar 

  19. G. Lin and A.M. Tartakovsky. An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media. Advances in Water Resources, 32(5):712–722, 2009.

    Article  Google Scholar 

  20. M. Loève. Probability theory. II. Springer-Verlag, New York, fourth edition, 1978. Graduate Texts in Mathematics, Vol. 46.

    Google Scholar 

  21. F. Müller, P. Jenny, and D.W. Meyer. Probabilistic collocation and lagrangian sampling for advective tracer transport in randomly heterogeneous porous media. Advances in Water Resources, 34(12):1527–1538, 2011.

    Article  Google Scholar 

  22. S.P. Neuman, M. Riva, and A. Guadagnini. On the geostatistical characterization of hierarchical media. Water Resources Research, 44(2), 2008.

    Google Scholar 

  23. F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2411–2442, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. N. L. Patterson. The optimum addition of points to quadrature formulae. Math. Comp. 22 (1968), 847–856; addendum, ibid., 22(104):C1–C11, 1968.

    Google Scholar 

  25. C. Schwab and R. A. Todor. Karhunen-Loève approximation of random fields by generalized fast multipole methods. Journal of Computational Physics, 217(1):100 – 122, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  26. I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity, 14(1):1–33, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Tamellini. Polynomial approximation of PDEs with stochastic coefficients. PhD thesis, Politecnico di Milano, 2012.

    Google Scholar 

  28. D. Xiu and J.S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput., 27(3):1118–1139, 2005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second and third authors have been supported by the Italian grant FIRB-IDEAS (Project n. RBID08223Z) “Advanced numerical techniques for uncertainty quantification in engineering and life science problems”. Support from the VR project “Effektiva numeriska metoder för stokastiska differentialekvationer med tillämpningar” and King Abdullah University of Science and Technology (KAUST) AEA project “Predictability and Uncertainty Quantification for Models of Porous Media” is also acknowledged. The fourth author is a member of the KAUST SRI Center for Uncertainty Quantification in Computational Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Tempone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Beck, J., Nobile, F., Tamellini, L., Tempone, R. (2014). A Quasi-optimal Sparse Grids Procedure for Groundwater Flows. In: Azaïez, M., El Fekih, H., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012. Lecture Notes in Computational Science and Engineering, vol 95. Springer, Cham. http://doi.org/10.1007/978-3-319-01601-6_1

Download citation

Publish with us

Policies and ethics