Abstract
Nature-based solutions are inspired, supported, or integrated with nature; they restore natural flows, are adaptive, efficient, systemic, and incremental. They increase the resilience and sustainability of a city. Bioclimatic applies natural adaptation strategies so that the building and the built environment itself collect, accumulate, distribute, or dissipate energy. These can be applied at different scales and in both new projects and existing built environment. The urban bioclimatic aptitude of a city describes its current state, its limitations, and its potential. The methodology for constructing an Urban-Bioclimatic Aptitude Index consists of four steps: (1) description of the urban-bioclimatic system, (2) description of qualitative and quantitative variables, (3) generation of urban-bioclimatic variables, and (4) construction of the aptitude index. Urban Bioclimatic Aptitude is the measure of the capacity of the city to meet the climate needs and depends on the characteristics of the built environment as a new nature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Akbari H et al (2016) Local climate change and urban heat island mitigation techniques - the state of the art. J Civ Eng Manag 22(1):1–16. http://doi.org/10.3846/13923730.2015.1111934
Ameur M, Kharbouch Y, Mimet A (2020) Optimization of passive design features for a naturally ventilated residential building according to the bioclimatic architecture concept and considering the northern Morocco climate. Build Simul 13(3):270–285. http://doi.org/10.1007/s12273-019-0593-6
Andrade H, Alcoforado MJ, Oliveira S (2011) Perception of temperature and wind by users of public outdoor spaces: relationships with weather parameters and personal characteristics. Int J Biometeorol 55(5):665–680. http://doi.org/10.1007/s00484-010-0379-0
Asadi E, Da Silva MG, Antunes CH, Dias L (2012) Multi-objective optimization for building retrofit strategies: a model and an application. Energy Build. 44(1):81–87. http://doi.org/10.1016/j.enbuild.2011.10.016
Back Y, Bach PM, Jasper-Tönnies A, Rauch W, Kleidorfer M (2021) A rapid fine-scale approach to modelling urban bioclimatic conditions. Sci Total Environ 756:143732. http://doi.org/10.1016/j.scitotenv.2020.143732
Bianchi C, Thomas J, Smith AD (2019) Impact of microclimate and macroclimate on building energy consumption. ASHRAE Trans 125
Boukli Hacene MA, Chabane Sari NE (2020) Energy efficient design optimization of a bioclimatic house. Indoor Built Environ. 29(2):270–285. http://doi.org/10.1177/1420326X19856668
Bryant MM, Turner JS (2019) From thermodynamics to creativity: McHarg’s ecological planning theory and its implications for resilience planning and adaptive design. Socio-Ecol Pract Res 1(3–4):325–337. http://doi.org/10.1007/s42532-019-00027-1
Caldas L (2008) Generation of energy-efficient architecture solutions applying GENE_ARCH: an evolution-based generative design system. Adv Eng Inf 22(1):59–70. http://doi.org/10.1016/j.aei.2007.08.012
Cárdenas-Jirón LA, Morales-Salinas L (2019) Urbanismo bioclimático en Chile: Propuesta de biozonas para la planificación urbana y ambiental. Eure 45(136):135–162. http://doi.org/10.4067/S0250-71612019000300135
Carlucci S, Pagliano L, Sangalli A (2014) Statistical analysis of the ranking capability of long-term thermal discomfort indices and their adoption in optimization processes to support building design. Build Environ 75:114–131. http://doi.org/10.1016/j.buildenv.2013.12.017
Cetin M (2015) Determining the bioclimatic comfort in Kastamonu City. Environ Monit Assess 187(10):1–10. http://doi.org/10.1007/s10661-015-4861-3
Cetin M (2020) Climate comfort depending on different altitudes and land use in the urban areas in Kahramanmaras City. Air Qual Atmos Heal 13(8):991–999. http://doi.org/10.1007/s11869-020-00858-y
Cetin M, Adiguzel F, Gungor S, Kaya E, Sancar MC (2019) Evaluation of thermal climatic region areas in terms of building density in urban management and planning for Burdur, Turkey. Air Qual Atmos Heal 12(9):1103–1112. http://doi.org/10.1007/s11869-019-00727-3
Clarke JF, Bach W (1971) Comparison of the comfort conditions in different urban and suburban microenvironments. Int J Biometeorol 15(1):41–54. http://doi.org/10.1007/BF01804717
Cohen WJ (2019) The legacy of design with nature: from practice to education. Socio-Ecol Pract Res 1(3–4):339–345. http://doi.org/10.1007/s42532-019-00026-2
Dimoudi A, Zoras S, Kantzioura A, Stogiannou X, Kosmopoulos P, Pallas C (2014) Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece. Sustain Cities Soc 13:89–96. http://doi.org/10.1016/j.scs.2014.04.003
Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44(3):388–398. http://doi.org/10.2486/indhealth.44.388
Fröhlich D, Matzarakis A (2018) Spatial estimation of thermal indices in urban areas-basics of the skyhelios model. Atmosphere (Basel) 9(6):1–14. http://doi.org/10.3390/atmos9060209
Gobo JPA, Faria MR, Galvani E, Goncalves FLT, Monteiro LM (2018) Empirical model of human thermal comfort in subtropical climates: a first approach to the Brazilian Subtropical Index (BSI). Atmosphere (Basel) 9(10):391. http://doi.org/10.3390/atmos9100391
Goldberg V, Kurbjuhn C, Bernhofer C (2013) How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany). Meteorol. Zeitschrift 22(6):739–751. http://doi.org/10.1127/0941-2948/2013/0463
Gou S, Nik VM, Scartezzini JL, Zhao Q, Li Z (2018) Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy Build 169:484–506. http://doi.org/10.1016/j.enbuild.2017.09.095
Grigore E, Constantin (Oprea) DM, Bogan E, Cristea M-A, Tatu F (2020) The thermo-hygrometric index on the territory of the Southern Dobrogea plateau – a component of the balneoclimateric treatment. Present Environ Sustain Dev 14(1):89-98. http://doi.org/10.15551/pesd2020141007
Gubenskiǐ ID (2009) Physical factors of the urban dwelling environment: ecological and hygienic aspects. Gig Sanit 5:11–15
Henderson LJ (2016) The fitness of the environment, an inquiry into the biological significance of the properties of matter. Am Nat 47(554):105–115. The American Society and C. Press, The Universit (1913)
Karakounos I, Dimoudi A, Zoras S (2018) The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy Build 158:1266–1274. http://doi.org/10.1016/j.enbuild.2017.11.035
Katafygiotou MC, Serghides DK (2015) Bioclimatic chart analysis in three climate zones in Cyprus. Indoor Built Environ 24(6):746–760. http://doi.org/10.1177/1420326X14526909
Kawakubo S, Murakami S, Ikaga T, Asami Y (2018) Sustainability assessment of cities: SDGs and GHG emissions. Build Res Inf 46(5):528–539. http://doi.org/10.1080/09613218.2017.1356120
Kodis M, Galante P, Sterling EJ, Blair ME (2018) Ecological niche modeling for a cultivated plant species: a case study on taro (Colocasia esculenta) in Hawaii. Ecol Appl 28(4):967–977. http://doi.org/10.1002/eap.1702
Koo C, Hong T, Lee M, Seon Park H (2014) Development of a new energy efficiency rating system for existing residential buildings. Energy Policy 68:218–231. http://doi.org/10.1016/j.enpol.2013.12.068
Kuma Y, Fukuda H, Ozaki A (2007) Performance evaluation of residences by dynamic simulation: heat load based on changing the location, plan and specification of residences. J Asian Archit Build Eng 6(1):183–188. http://doi.org/10.3130/jaabe.6.183
Mirzaei PA (2015) Recent challenges in modeling of urban heat island. Sustain Cities Soc 19:200–206. http://doi.org/10.1016/j.scs.2015.04.001
Mistry MN (2020) A high spatiotemporal resolution global gridded dataset of historical human discomfort indices. Atmosphere (Basel) 11(8):835. http://doi.org/10.3390/ATMOS11080835
Nardino M, Laruccia N (2019) Land use changes in a peri-urban area and consequences on the urban heat Island. Climate 7(11):133. http://doi.org/10.3390/cli7110133
Notaro M, Mauss A, Williams JW (2012) Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach. Ecol Appl 22(4):1365–1388. http://doi.org/10.1890/11-1269.1
Patania F, Gagliano A, Caponetto R, Nocera F, Galesi A (2010) A neural network model for the estimation of bioclimatic indexes. WIT Trans Ecol Environ 136:237–247. http://doi.org/10.2495/AIR100211
Rantzoudi EC, Georgi JN (2017) Correlation between the geometrical characteristics of streets and morphological features of trees for the formation of tree lines in the urban design of the city of Orestiada, Greece. Urban Ecosyst 20(5):1081–1093. http://doi.org/10.1007/s11252-017-0655-4
Ren Z, Fu Y, Du Y, Zhao H (2019) Spatiotemporal patterns of urban thermal environment and comfort across 180 cities in summer under China’s rapid urbanization. PeerJ 2019(8):e7424. http://doi.org/10.7717/peerj.7424
Román E, Gómez G, de Luxán M (2017) Urban heat Island of Madrid and its influence over urban thermal comfort. In: Sustainable development and renovation in architecture, urbanism and engineering
Saá C, Míguez JL, Morán JC, Vilán JA, Lago ML, Comesaña R (2012) A study of the influence of solar radiation and humidity in a bioclimatic traditional Galician agricultural dry storage structure (horreo). Energy Build 55:109–117. http://doi.org/10.1016/j.enbuild.2012.05.020
Salat S, Vialan D (2010) Sustainable Mediterranean urban development affordable to all, a morphological approach
Salat S, Bourdic L (2013) Passive zones, bio-climatic design and scale hierarchic urban fabric. WIT Trans Ecol Environ 173:563–572. http://doi.org/10.2495/SDP130471
Schipper L, Meyers S, Howarth, RB, Steiner R (1992) Energy efficiency and human activity: past trends, future prospects. http://doi.org/10.1016/0959-3780(93)90032-g
Toy S, Yilmaz S (2010) Evaluation of urban-rural bioclimatic comfort differences over a ten-year period in the sample of Erzincan city reconstructed after a heavy earthquake. Atmosfera 23(4):387–402
Valdiserri P, Biserni C, Garai M (2016) Energy performance of a ventilation system for an apartment according to the Italian regulation. Int J Energy Environ Eng 7(3):353–359. http://doi.org/10.1007/s40095-014-0159-4
Widera B (2014) Bioclimatic architecture as an opportunity for developing countries. In: 30th international PLEA conference: sustainable habitat for developing societies: choosing the way forward - proceedings, vol 2
Yuan J, Emura K, Farnham C (2017) Is urban albedo or urban green covering more effective for urban microclimate improvement?: A simulation for Osaka. Sustain Cities Soc 32:78–86. http://doi.org/10.1016/j.scs.2017.03.021
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ugalde-Monzalvo, M. (2025). Urban-Bioclimatic Aptitude as Nature-Based Solution. In: Cobreros, C., Giorgi, E., Cattaneo, T. (eds) Regenerative Design. Cities and Nature. Springer, Cham. http://doi.org/10.1007/978-3-031-76890-3_15
Download citation
DOI: http://doi.org/10.1007/978-3-031-76890-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-76889-7
Online ISBN: 978-3-031-76890-3
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)