Skip to main content
Log in

Linear ordinal quasi-symmetry model and decomposition of symmetry for multi-way tables

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

For multi-way tables with same categories, Bhapkar and Darroch [4] and Agresti [2], p. 440, considered the general order quasi-symmetry model and the ordinal quasi-symmetry model, respectively. Yamamoto, Iwashita and Tomizawa [16] considered the three kinds of linear ordinal quasi-symmetry models, which are special cases of the first and second order quasi-symmetry models. For multi-way tables with same ordinal categories, the present paper proposes the general linear ordinal quasi-symmetry models, which are special cases of the general order quasi-symmetry model, and gives new decomposition of the symmetry model. Moreover it is shown that the likelihood ratio statistic for testing goodness-of-fit of the symmetry model is asymptotically equivalent to the sum of those for testing goodness-of-fit of the decomposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (China (P.R.))

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. A. Agresti, “A Simple Diagonals-Parameter Symmetry and Quasi-Symmetry Model”, Statist. Probab. Lett. 1, 313–316 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Agresti, Categorical Data Analysis, 2nd ed. (Wiley, New York, 2002).

    Book  MATH  Google Scholar 

  3. J. Aitchison, “Large-Sample Restricted Parametric Tests”, J. Roy. Statist. Soc., Ser. B 24, 234–250 (1962).

    MATH  MathSciNet  Google Scholar 

  4. V. P. Bhapkar and J. N. Darroch, “Marginal Symmetry and Quasi Symmetry of General Order”, J. Multivar. Anal. 34, 173–184 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  5. J. N. Darroch and D. Ratcliff, “Generalized Iterative Scaling for Log-Linear Models”, Ann. Math. Statist. 43, 1470–1480 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  6. J. N. Darroch and S. D. Silvey, “On Testing More Than One Hypothesis”, Ann. Math. Statist. 34, 555–567 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  7. J. N. Darroch and T. P. Speed, “Additive and Multiplicative Models and Interactions”, Ann. Statist. 11, 724–738 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Haber, “Maximum Likelihood Methods for Linear and Log-Linear Models in Categorical Data”, Comput. Statist. and Data Analysis 3, 1–10 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  9. J. B. Lang, “On the Partitioning of Goodness-of-Fit Statistics for Multivariate Categorical Response Models”, J. Amer. Statist. Assoc. 91, 1017–1023 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  10. J. B. Lang and A. Agresti, “Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses”, J. Amer. Statist. Assoc. 89, 625–632 (1994).

    Article  MATH  Google Scholar 

  11. C. R. Rao, Linear Statistical Inference and Its Applications, 2nd ed. (Wiley, New York, 1973).

    Book  MATH  Google Scholar 

  12. C. B. Read, “Partitioning Chi-Square in Contingency Tables: A Teaching Approach”, Commun. Statist. — Theory and Methods 6, 553–562 (1977).

    Article  MathSciNet  Google Scholar 

  13. K. Tahata, H. Yamamoto, and S. Tomizawa, “Orthogonality of Decompositions of Symmetry into Extended Symmetry and Marginal Equimoment for Multi-Way Tables with Ordered Categories”, Austrian J. Statist. 37, 185–194 (2008).

    Google Scholar 

  14. S. Tomizawa, “An Extended Linear Diagonals-Parameter Symmetry Model for Square Contingency Tables with Ordered Categories”, Metron 49, 401–409 (1991).

    Google Scholar 

  15. S. Tomizawa and K. Tahata, “The Analysis of Symmetry and Asymmetry: Orthogonality of Decomposition of Symmetry into Quasi-Symmetry and Marginal Symmetry for Multi-Way Tables”, J. Socié té Francçaise de Statist. 148, 3–36 (2007).

    MathSciNet  Google Scholar 

  16. H. Yamamoto, T. Iwashita, and S. Tomizawa, “Decomposition of Symmetry into Ordinal Quasi-Symmetry and Marginal Equimoment for Multi-Way Tables”, Austrian J. Statist. 36, 291–306 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tahata.

About this article

Cite this article

Tahata, K., Yamamoto, H. & Tomizawa, S. Linear ordinal quasi-symmetry model and decomposition of symmetry for multi-way tables. Math. Meth. Stat. 20, 158–164 (2011). http://doi.org/10.3103/S1066530711020050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: http://doi.org/10.3103/S1066530711020050

Keywords

2000 Mathematics Subject Classification