Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Test
  3. Article

Shannon optimal priors on independent identically distributed statistical experiments converge weakly to Jeffreys' prior

  • Published: June 1998
  • Volume 7, pages 75–94, (1998)
  • Cite this article
Download PDF

Access provided by China Pharmaceutical University

Test Aims and scope Submit manuscript
Shannon optimal priors on independent identically distributed statistical experiments converge weakly to Jeffreys' prior
Download PDF
  • Holger R. Scholl1 
  • 87 Accesses

  • 5 Citations

  • Explore all metrics

Abstract

In 1979, J.M. Bernardo argued heuristically that in the case of regular product experiments his information theoretic reference prior is equal to Jeffreys' prior. In this context, B.S. Clarke and A.R. Barron showed in 1994, that in the same class of experiments Jeffreys' prior is asymptotically optimal in the sense of Shannon, or, in Bayesian terms, Jeffreys' prior is asymptotically least favorable under Kullback Leibler risk. In the present paper, we prove, based on Clarke and Barron's results, that every sequence of Shannon optimal priors on a sequence of regular iid product experiments converges weakly to Jeffreys' prior. This means that for increasing sample size Kullback Leibler least favorable priors tend to Jeffreys' prior.

Article PDF

Download to read the full article text

Similar content being viewed by others

A Characterization of Jeffreys’ Prior with Its Implications to Likelihood Inference

Chapter © 2020

Permissible noninformative priors for the accelerated life test model with censored data

Article Open access 24 March 2016

Classification using sequential order statistics

Article 07 August 2019

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Bayesian Inference
  • Information theory
  • Non-parametric Inference
  • Parametric Inference
  • Probability Theory
  • Statistical Theory and Methods
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Arimoto, S. (1972). An algorithm for computing the capacity of arbitrary discrete memoryless channels.IEEE Transactions on Information Theory,18, 14–20.

    Article  MathSciNet  Google Scholar 

  • Blahut, R.E. (1972). Computation of channel capacity and rate distortion functions.IEEE Transactions on Information Theory,18, 460–473.

    Article  MathSciNet  Google Scholar 

  • Berger, J. and J.M. Bernardo (1992). On the development of the reference prior method.Bayesian Statistics 4 (J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith, eds.) Oxford: University Press, 35–60 (with discussion).

    Google Scholar 

  • Berger, J., J.M. Bernardo and M. Mendoza (1989). On priors that maximize expected information.Recent Developments in Statistics and Their Applications (J.P. Klein and J.C. Lee, eds.). Seoul: Freedom Academy Publishing. 1–20.

    Google Scholar 

  • Bernardo, J.M. (1979). Reference posterior distributions for Bayesian inference.Journal of the Royal Statistical Society, Ser. B,41, 113–147 (with discussion).

    MathSciNet  Google Scholar 

  • Bernardo, J.M. and A.F.M. Smith (1994).Bayesian theory. Chichester: Wiley and Sons.

    MATH  Google Scholar 

  • Clarke, B.S. and A.R. Barron (1990). Information—theoretic asymptotics of Bayes methods.IEEE Transactions on Information Theory,36, 453–471.

    Article  MathSciNet  Google Scholar 

  • Clarke, B.S. and A.R. Barron (1994). Jeffreys' prior is asymptotically least favorable under entropy risk.Journal of Statistical Plannning and Inference,41, 37–60.

    Article  MathSciNet  Google Scholar 

  • Dudley, R.M. (1989).Real analysis and probability. Pacific Grove, California: Wadsworth and Brooks/Cole.

    MATH  Google Scholar 

  • Gallager, R.G. (1968).Information theory and reliable communication. New York: Wiley and Sons.

    MATH  Google Scholar 

  • Ghosal, S. (1997). Reference priors in multiparameter nonregular cases.Test,6, 159–186.

    MathSciNet  Google Scholar 

  • Gosh, J.K. and R. Mukerjee. (1992). Non-informative priors.Bayesian Statistics 4 (J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith, eds.). Oxford: University Press, 195–210 (with discussion).

    Google Scholar 

  • Haussler, D. (1997). A general minimax result for relative entropy.IEEE Transactions on Information Theory,43, 1276–1280.

    Article  MathSciNet  Google Scholar 

  • Jeffreys, H. (1961/1983).Theory of probability (3rd. ed.). Oxford: Clarendon Press.

    Google Scholar 

  • Krob, J. (1992).Kapazität statistischer Experimente. Ph.D. Dissertation. Kaiserslautern: Department of Mathematics, University of Kaiserslautern.

    MATH  Google Scholar 

  • Krob, J. and H. Scholl (1997). A minimax result for the Kullback Leibler Bayes risk.Economic quality control, to appear.

  • Lindley, D.V. (1956). On a measure of the information provided by an experiment.Annals of Mathematical Statatistics,27, 986–1005.

    MathSciNet  Google Scholar 

  • Meyer, P.-A. (1966).Probabilités et potential. Paris: Maison d'edition Hermann.

    Google Scholar 

  • Shannon, C.E. and W. Weaver (1949).The mathematical theory of communication. Urbana: University of Illinois Press.

    MATH  Google Scholar 

  • Spall, J.C. and S.D. Hill (1990). Least informative Bayesian prior distributions for finite samples based on information theory.IEEE Transactions on Automatic Control,35, 580–583.

    Article  Google Scholar 

  • Sun, D. and K.Y. Ye (1995). Reference prior Bayesian analysis for normal mean products.Journal of the American Statistical Association,90, 589–597.

    Article  MathSciNet  Google Scholar 

  • Topsøe, F. (1974).Informationstheorie. Stuttgart: B.G. Teubner Verlag.

    MATH  Google Scholar 

  • Williams, D. (1991).Probability with martingales. Cambridge: University Press.

    MATH  Google Scholar 

  • Yang, R. (1995). Invariance of the reference prior under reparametrization.Test,4, 83–94.

    MathSciNet  Google Scholar 

  • Yang, R. and J.O. Berger (1994). Estimation of a covariance matrix using the reference prior.Annals of Statistics,22, 1195–2111.

    MathSciNet  Google Scholar 

  • Zhang, Z. (1994).Discrete noninformative priors. Ph.D. Dissertation. New Haven: Department of Statistics, Yale University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Kaiserslautern, Postbox 3049, 67653, Kaiserslautern, Germany

    Holger R. Scholl

Authors
  1. Holger R. Scholl
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholl, H.R. Shannon optimal priors on independent identically distributed statistical experiments converge weakly to Jeffreys' prior. Test 7, 75–94 (1998). http://doi.org/10.1007/BF02565103

Download citation

  • Received: 15 March 1996

  • Accepted: 15 August 1997

  • Issue Date: June 1998

  • DOI: http://doi.org/10.1007/BF02565103

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key Words

  • Bayes risk
  • channel capacity
  • Jeffreys' prior
  • Kullback-Leibler distance
  • minimax risk
  • noninformative prior
  • reference prior
  • Shannon optimal prior
  • statistical experiment
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

202.119.189.180

Springer ejournal Jiangsu Regional consortium (3902333164) - China Pharmaceutical University (2000352041) - China Institute of Science & Technology acting through National Science and (3000202650) - SLCC Jiangsu eJournals Consortium 2015-2017 (3991465546) - 10786 SLCC Jiangsu (3000803042) - Nature DRAA eJournal National Consortium (3902333280)

Springer Nature

© 2025 Springer Nature