
A soĞware interface for Kђѐѐюј

In this note, we propose an interface to Kђѐѐюј at the level of the sponge and duplex con-
structions, and inside Kђѐѐюј at the level of the Kђѐѐюј- f permutation. The purpose is
twofold.

First, it allows users of Kђѐѐюјmaking best use of its flexibility. As focused on by the SHA-3
contest [9, 10], Kђѐѐюј is sometimes viewed solely as a hash function and some implemen-
tations are inherently restricted to the traditional fixed-output-length instances. Instead,
the proposed interface reflects the features of the sponge and duplex constructions, from
the arbitrary output length to the flexibility of choosing security-speed trade-offs.

Second, it simplifies the set of optimized implementations on different platforms. Nearly
all the processing of Kђѐѐюј takes place in the evaluation of the Kђѐѐюј- f permutation as
well as in adding (using bitwise addition of vectors in GF(2)) input data into the state and
extracting output data from it. The interface helps isolate the part that needs to be most
optimized, while the rest of the code can remain generic. If they share the same interface,
optimized implementations can be interchanged and a developer can select the best one for
a given platform.

As a concrete exercise, we adapted some implementations from [6] to the proposed interface
and posted them in a new “Kђѐѐюј Code Package” [8]. For the optimized implementations,
it appears that the impact on the throughput is negligible while it significantly improves
development flexibility and simplicity.

In the rest of this note, we first give an overview of the proposed interface. We then say
some words about the implementations in the “Kђѐѐюј Code Package”. Finally, we discuss
some possible refinements and extensions.

1 Overview of the proposed interface

Figure 1 shows the different levels of functionality, from the modes of use down to the
cryptographic permutation. In this note, we wish to propose and describe interfaces

• to the permutation;

• to the sponge construction;

• to the duplex construction.

Permutation Primitive

Sponge Duplex Construction

Hashing MAC PRNG Auth. Enc. Mode

Figure 1: From modes to constructions to primitive

We leave interfaces to modes outside of the scope. Instead, we take modes into account in
their use of the sponge or duplex construction.

As another remark, it has been shown in [2, Duplexing-sponge lemma] that a duplex object
can be formally reduced to a sponge function. Hence, one could expect an arrow from
duplex to sponge, or duplex to be on top of sponge. However, Figure 1 aims at showing the

A soĞware interface for Kђѐѐюј

layering as in the definitions and in implementations—it would be completely inefficient to
implement the duplex construction via the sponge construction.

We now overview the proposed interface in a boĴom-up fashion: from primitive to con-
structions.

1.1 Permutation and state management

Both the sponge and duplex constructions operate on a state. They apply the (Kђѐѐюј- f)
permutation to it, add data into it or extract data from it. Therefore we define a layer that
supports these three operations and their combination: the permutation and state manage-
ment. We are aware that this slightly deviates from the layering depicted in Figure 1, as we
support in fact operations that sponge and duplex need to perform on the state, including
applying the permutation.

The proposed interface hides the value and layout of the state from the layer above. This al-
lows using an optimized implementation of Kђѐѐюј- f that relies on a specific representation
of the state. The functions and their parameters of the interface favor an implementation
organized in lanes, while not assuming anything on how lanes are represented. This is con-
sistent with the soĞware-oriented techniques of [7], where in lane complementing, a subset of
the lanes are stored with their bits complemented, and in bit interleaving each lane is stored
with its bits transposed and in multiple words.

The proposed interface supports:

• lane-aligned access, where data can be added to, or extracted from, with the granu-
larity of a lane and starting from the origin;

• byte-wise, intra-lane access, where a small number of bytes can be added to or ex-
tracted from within a single lane;

• bit-level complementing, where the value of a single bit can be completed, in partic-
ular at position r − 1 for the second bit of multi-rate padding;

• and of course the application of the permutation on the value of the state.

It is described in Appendix A.1.

Input, permutation and output operations can be combined in a single call for optimal per-
formance. For instance, if data is added into lanes, the value of these lanes has to be loaded
in the processor’s register. Hence, applying the permutation immediately aĞer the XORs
can take advantage of these values already loaded. A similar argument applies when ex-
tracting data from the state. This is the idea behind the combined function KeccakF1600_-
StateXORPermuteExtract() (see Section A.1.9): it enables the sequence of input, permu-
tation and output in a single function call.

As currently proposed, the input and output data are restricted to whole number of lanes,
again assuming that the implementation of Kђѐѐюј- f is lane-oriented. We found this re-
striction to be a natural trade-off with simplification. Of course, when the data size is not
a multiple of the lane size, trailing bytes can be added before or extracted aĞer calling the
combined function.

The combined function can be equally well used for sponge functions in absorbing phase
(input data only) and in squeezing phase (output data only) or for duplex objects (both
input and output data in the same call).

In a simple implementation respecting this interface, one may decide to write a function
taking care only of the permutation and then write the combined function as a sequence of

2

A soĞware interface for Kђѐѐюј

input, permutation and output functions. In other cases, one may decide to favor a tightly
optimized combined function andwrite the permutation function as a special case, invoking
the combined function with no input or output data. In more extreme case, one could write
one or more combined functions dedicated to a fixed number of input and/or output lanes.
E.g., such a function dedicated to 21 input lanes can lead to optimal performances for the
absorbing phase of Kђѐѐюј[r = 1344, c = 256].

1.2 The sponge construction

The interface allows

• initializing the sponge function for chosen rate and capacity parameters;

• absorbing input data, with the input data provided in chunk sizes of the caller’s choice
(and so independently of lane alignment);

• squeezing out output data in chunks of arbitrary sizes.

Hence the interface provides the next layer with a queue both for input and output data. It
is described in details in Appendix A.2.

In the main absorbing and squeezing functions, the data lengths are given in bytes, in-
stead of bits. This seems rather natural as the input/output buffers are given as pointers
to bytes—and this also avoids “bit aĴacks” [1]. Input strings whose size is not a multiple
of 8 bits are covered by a dedicated function that absorbs the last trailing bits not filling a
byte. For instance, as in [4, Section 6.4], a fixed bit string is appended as suffix for domain
separation. When everything else is byte-aligned, this comes down to calling the dedicated
function to absorb the fixed suffix.

The trailing bits are given delimited with reversible padding in a byte (see Section A.2.3),
so that the number of bits does not have to be given as an explicit parameter. In practice,
the reversible padding in the byte matches the first bit of the 10∗1 padding, and this can be
used to just add the delimited byte into the state. For example, see the function Keccak_-
SpongeAbsorbLastFewBits() in [8].

1.3 The duplex construction

The interface allows

• initializing the duplex object for chosen rate and capacity parameters;

• performing a duplexing call to the duplex object.

It is described in details in Appendix A.3.

Similarly as for the sponge construction, the interface distinguishes the input bytes from the
input trailing bits. The former are given as a pointer to a buffer, while the laĴer are given as
a byte value. This can separate application-level data from mode-level frame bits. For in-
stance, in the SѝќћєђWџюѝ mode [2], the data blocks to be enciphered and/or authenticated
are first appended with a frame bit 0 or 1 to provide domain separation between keystream
and MAC. It would be a pity if, in the implementation of the SѝќћєђWџюѝ mode, one has
to first copy the data blocks into a buffer, append the frame bit, and then make a duplexing
call with that buffer. Instead, the data block can be given as a pointer to its original location
and the frame bit can be given in a separate parameter.

3

A soĞware interface for Kђѐѐюј

2 Revisiting the Kђѐѐюј implementations

The “Kђѐѐюј Reference and Optimized Code in C” [6] package contains many different
implementations, not all using the same base. For example, some implementations of that
package use a dedicated buffer for the input/output data queue, others implement a queue
directly in the state, and yet others do not implement any queue functionality at all. As
another example, some implementations are restricted to a rate multiple of the lane size,
others do not have that restriction.

In the new “Kђѐѐюј Code Package” [8], we wrote code for the sponge and duplex construc-
tions calling the permutation and state management interface proposed in Section 1.1. This
provides a common and coherent base for all implementations. We then adapted some ref-
erence and optimized codes for Kђѐѐюј- f [1600] to this interface. The platform-dependency
is thus now limited to the permutation and state management.

As the code for the sponge and duplex constructions is meant to be common for all (ref-
erence or optimized) implementations, we chose the options that are the most flexible to
the user. As a by-product, this also proof-tested the suitability of the permutation and state
management interface. For instance, in the sponge construction, we chose the option where
the message queue directly uses the state, minimizing the memory consumption. In the ab-
sorbing phase, the chunks of input data are added into the state and a byte index keeps
track of where the next chunk has to go. (As a reminder, in sponge functions, the message
blocks can be directly added into the state and do not need to be kept in memory.) In the
squeezing phase, the byte index tells where the next output bytes are to be taken from.

This new “Kђѐѐюј Code Package” is a work in progress. At the time of this writing, we only
adapted a small number of implementations of Kђѐѐюј- f [1600], namely:

• the reference implementation with 64-bit words;

• the reference implementation with 32-bit words using bit interleaving (BI);

• the optimized implementation in plain Cwith round unrolling and optional lane com-
plementing;

• the optimized in-place implementation with 32-bit BI, minimizing memory usage for
constrained devices.

Adapting to other Kђѐѐюј- f instances, such as Kђѐѐюј- f [800] or Kђѐѐюј- f [200], would not
take too much effort; e.g., the sponge and duplex constructions refer to the lane size as a
compile-time parameter.

Contributions are of course welcome and can be sent via github.

3 Refinements and perspectives

In this section, we discuss some possible refinements to the interface and how the existing
functions can be used in some specific cases.

3.1 Considering parallel evaluations

On some platforms as well as in some use cases, it can be advantageous to execute the
Kђѐѐюј- f permutation on several state values in parallel as it can result in faster processing
per input/output data unit than when using sequential executions. One such use case is
parallel (or tree) hashing; another is the production of several independent key streams.

We now discuss a possible extension of the interface for parallel executions of Kђѐѐюј- f .

4

A soĞware interface for Kђѐѐюј

We focus on the case where the different permutation instances are parallelized on a single
execution flow, i.e., on a single core. In other situations, such as independent cores, proces-
sors or machines, we expect that synchronizing the different processes or threads on each
call to Kђѐѐюј- f would be too fine-grained andwould result in inefficient implementations.
So, in other words, we focus on microscopic parallelism as explained in [4, Section 5.3].

A possible extension could define an opaque structure that gathers n states, and each func-
tion would have an additional parameter to specify on which instance number (say from 0
to n − 1) the function works. In addition to this, one would add a function performing the
Kђѐѐюј- f permutation on the n state instances in parallel. On a platform that does not ben-
efit from parallelism, this multi-permutation function could just call the single-permutation
implementation n times as a fall-back. And at the level of the construction, one can imagine
adding functions that process n sponge functions or duplex objects in parallel.

The reason for making the structure opaque is to allow an optimized implementation orga-
nizing the n states in a favorable way. For instance, an implementation using 128-bit SIMD
instructions could store the 64-bit lane (x, y) of state #0 immediately followed by the 64-bit
lane (x, y) of state #1 so as to be able to load the two lanes in one shot, as proposed in [7,
Section 3.1.3].

The need for a simple fall-back serial implementation goes more smoothly with parallel or
tree hashing modes that process blocks of r bits per call to Kђѐѐюј- f or, in the language of
[5, 4], that use an interleaving block size equal to (a multiple of) the rate, i.e., I = nr. The
reason is the following. The faster functions to absorb input data (or to squeeze output data)
assume data to be organized in a block of consecutive bits, and the most favorable situation
is to absorb (or squeeze) exactly r bits. If one uses an interleaving factor of, say, I = 64 bits,
this could be advantageous on a 128-bit SIMD unit for the same reasons as described above,
but when the same tree has to be evaluated sequentially (on a platform not able to exploit
parallelism), the input data are not organized in contiguous blocks. Note that the figures in
[7, Section 3.1.3] are given for I = 64 bits, but our experiments suggest that the performance
impact when using I = r instead is negligible.

At the time of this writing, there is no code for parallel evaluations of Kђѐѐюј- f [1600] in [8],
but it would be interesting to add it in the future.

3.2 Mode-specific features

There are two othermode-specific features that could be added to the permutation and state
management interface, although we do not include them at this time.

The first feature is the ability to retrieve the added input. This could be useful in a duplex-
ing call when used in the SpongeWrap mode [2]. In that mode, the encryption of a given
plaintext block is done by bitwise adding the output of the previous duplexing call. This
plaintext block is then used as input in the next duplexing call, which bitwise-adds it into
the state. These two additions turn out to yield the same value, namely the cipher text block
on the one hand and a part of the state on the other hand. Hence, a function that retrieves
the added input could be used to do the encryption for free.

The second feature is the ability to set the value of the outer part of the state instead of
adding data. This would find an application in the Overwrite mode [2], which can be used
to save memory between permutation calls.

For each feature, one would also need to make it visible up to the mode level, hence to add
or adapt functions at the level of the duplex construction.

The Kђѐѐюј Team, July 2013
Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche

5

A soĞware interface for Kђѐѐюј

References

[1] D. J. Bernstein, Bit aĴacks, First SHA-3 candidate conference, 2009.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Duplexing the sponge: single-pass
authenticated encryption and other applications, Selected Areas in Cryptography (SAC),
2011.

[3] , The Kђѐѐюј reference, January 2011, http://keccak.noekeon.org/.

[4] , Sakura: a flexible coding for tree hashing, Cryptology ePrint Archive, Report
2013/231, 2013, http://eprint.iacr.org/.

[5] , Sufficient conditions for sound tree and sequential hashingmodes, Cryptology ePrint
Archive, Report 2009/210 (revised April 2013), 2013, http://eprint.iacr.org/.

[6] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, Reference and opti-
mized implementations of Kђѐѐюј, 2012, http://keccak.noekeon.org/.

[7] , Kђѐѐюј implementation overview, May 2012, http://keccak.noekeon.org/.

[8] , Kђѐѐюј code package, June 2013, https://github.com/gvanas/
KeccakCodePackage.

[9] NIST, Announcing request for candidate algorithm nominations for a new cryptographic hash
algorithm (SHA-3) family, Federal Register Notices 72 (2007), no. 212, 62212–62220,
http://csrc.nist.gov/groups/ST/hash/index.html.

[10] , NIST selects winner of secure hash algorithm (SHA-3) competition, October 2012,
http://www.nist.gov/itl/csd/sha-100212.cfm.

6

http://keccak.noekeon.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage
http://csrc.nist.gov/groups/ST/hash/index.html
http://www.nist.gov/itl/csd/sha-100212.cfm

A soĞware interface for Kђѐѐюј

A Interface used in the “Kђѐѐюј Code Package”

This section documents how the proposed interface was concretely laid out in C in “Kђѐѐюј
Code Package” [8]. It is currently only limited to sponge and duplex instances based on
Kђѐѐюј- f [1600], although this could be extended to other Kђѐѐюј- f instances or even to
other permutations.

The division of the state into lanes is specific to Kђѐѐюј- f . In the case of other permuta-
tions, the concept of “lane” could nevertheless be remapped to other data units in which
the permutation can be naturally cut.

In addition, the interface is described in detail in the C language. We think that the general
structure is more important than the details specific to the C language and we believe that
adapting it to another programming language is easy.

A.1 Permutation and state management

A.1.1 KeccakF1600_Initialize()

void KeccakF1600_Initialize(void);

Function called at least once before any use of the other KeccakF1600_* functions, possibly
to initialize global variables.

A.1.2 KeccakF1600_StateInitialize()

KeccakF1600_StateInitialize(void *state);

Function to initialize the state to the logical value 01600.

state Pointer to the state to initialize

A.1.3 KeccakF1600_StateXORBytesInLane()

void KeccakF1600_StateXORBytesInLane(void *state, unsigned int lanePosi-
tion, const unsigned char *data, unsigned int offset, unsigned int length);

Function to XOR data given as bytes into the state. The bits to modify are restricted to be
consecutive and to be in the same lane. The bit positions that are affected by this function are
from lanePosition× 64 + offset× 8 to lanePosition× 64 + offset× 8 + length× 8.
(The bit positions, the x, y, z coordinates and their link are defined in [3].)

state Pointer to the state.
lanePosition Index of the lane to be modified (x + 5y, or bit position divided

by 64).
data Pointer to the input data.
offset Offset in bytes within the lane.
length Number of bytes.

Preconditions:

• 0 ≤ lanePosition < 25

• 0 ≤ offset < 8

• 0 ≤ offset+ length ≤ 8

7

A soĞware interface for Kђѐѐюј

A.1.4 KeccakF1600_StateXORLanes()

void KeccakF1600_StateXORLanes(void *state, const unsigned char *data, un-
signed int laneCount);

Function to XOR data given as bytes into the state. The bits to modify are restricted to start
from the bit position 0 and to span a whole number of lanes (i.e., multiple of 8 bytes).

state Pointer to the state.
data Pointer to the input data.
laneCount The number of lanes, i.e., the length of the data divided by 64 bits.

Preconditions:

• 0 ≤ laneCount ≤ 25

A.1.5 KeccakF1600_StateComplementBit()

void KeccakF1600_StateComplementBit(void *state, unsigned int position);

Function to complement the value of a given bit in the state. This function is typically used
to XOR the second bit of the multi-rate padding into the state.

state Pointer to the state.
position The position of the bit to complement.

Preconditions:

• 0 ≤ position < 1600

A.1.6 KeccakF1600_StatePermute()

void KeccakF1600_StatePermute(void *state);

Function to apply Kђѐѐюј- f [1600] on the state.

state Pointer to the state.

A.1.7 KeccakF1600_StateExtractBytesInLane()

void KeccakF1600_StateExtractBytesInLane(const void *state, unsigned int
lanePosition, unsigned char *data, unsigned int offset, unsigned int
length);

Function to retrieve data from the state into bytes. The bits to output are restricted to be
consecutive and to be in the same lane. The bit positions that are retrieved by this function
are from lanePosition× 64+offset× 8 to lanePosition× 64+offset× 8+ length×
8. (The bit positions, the x, y, z coordinates and their link are defined in [3].)

state Pointer to the state.
lanePosition Index of the lane to be read (x + 5y, or bit position divided by 64).
data Pointer to the area where to store output data.
offset Offset in byte within the lane.
length Number of bytes.

Preconditions:

• 0 ≤ lanePosition < 25

• 0 ≤ offset < 8

8

A soĞware interface for Kђѐѐюј

• 0 ≤ offset+ length ≤ 8

A.1.8 KeccakF1600_StateExtractLanes()

void KeccakF1600_StateExtractLanes(const void *state, unsigned char *data,
unsigned int laneCount);

Function to retrieve data from the state into bytes. The bits to output are restricted to start
from the bit position 0 and to span a whole number of lanes (i.e., multiple of 8 bytes).

state Pointer to the state.
data Pointer to the area where to store output data.
laneCount The number of lanes, i.e., the length of the data divided by 64 bits.

Preconditions:

• 0 ≤ laneCount ≤ 25

A.1.9 KeccakF1600_StateXORPermuteExtract()

void KeccakF1600_StateXORPermuteExtract(void *state, const unsigned char
*inData, unsigned int inLaneCount, unsigned char *outData, unsigned int
outLaneCount);

Function to sequentially XOR data bytes, apply the Kђѐѐюј- f [1600] permutation and re-
trieve data bytes from the state. The bits to modify and to output are restricted to start from
the bit position 0 and to span a whole number of lanes (i.e., multiple of 8 bytes). Its effect
should be functionally identical to calling in order:

1. KeccakF1600_StateXORLanes(state, inData, inLaneCount);

2. KeccakF1600_StatePermute(state);

3. KeccakF1600_StateExtractLanes(state, outData, outLaneCount);

state Pointer to the state.
inData Pointer to the input data.
inLaneCount The number of lanes, i.e., the length of the input data divided by

64 bits.
outData Pointer to the area where to store output data.
outLaneCount The number of lanes, i.e., the length of the output data divided

by 64 bits.

Preconditions:

• 0 ≤ inLaneCount ≤ 25

• 0 ≤ outLaneCount ≤ 25

A.2 The sponge construction

A.2.1 Keccak_SpongeInitialize()

int Keccak_SpongeInitialize(Keccak_SpongeInstance *spongeInstance, unsigned
int rate, unsigned int capacity);

Function to initialize the state of the Kђѐѐюј[r, c] sponge function. The phase of the sponge
function is set to absorbing.

9

A soĞware interface for Kђѐѐюј

spongeInstance Pointer to the sponge instance to be initialized.
rate The value of the rate r.
capacity The value of the capacity c.

Preconditions:

• One must have r + c = 1600 and the rate a multiple of 8 bits (one byte) in this imple-
mentation.

Returns: Zero if successful, 1 otherwise.

A.2.2 Keccak_SpongeAbsorb()

int Keccak_SpongeAbsorb(Keccak_SpongeInstance *spongeInstance, const un-
signed char *data, unsigned long long dataByteLen);

Function to give input data bytes for the sponge function to absorb.

spongeInstance Pointer to the sponge instance initialized by Keccak_-
SpongeInitialize().

data Pointer to the input data.
dataByteLen The number of input bytes provided in the input data.

Preconditions:

• The sponge function must be in the absorbing phase, i.e., Keccak_SpongeSqueeze()
or Keccak_SpongeAbsorbLastFewBits()must not have been called before.

Returns: Zero if successful, 1 otherwise.

A.2.3 Keccak_SpongeAbsorbLastFewBits()

int Keccak_SpongeAbsorbLastFewBits(Keccak_SpongeInstance *spongeInstance,
unsigned char delimitedData);

Function to give input data bits for the sponge function to absorb and then to switch to the
squeezing phase.

spongeInstance Pointer to the sponge instance initialized by Keccak_-
SpongeInitialize().

delimitedData Byte containing from 0 to 7 trailing bits that must be absorbed.
These n bits must be in the least significant bit positions. These
bits must be delimited with a bit 1 at position n (counting from
0=LSB to 7=MSB) and followed by bits 0 from position n + 1 to
position 7. Some examples:

• If no bits are to be absorbed, then delimitedData must be
0x01.

• If the 2-bit sequence 0, 0 is to be absorbed, delimitedData
must be 0x04.

• If the 5-bit sequence 0, 1, 0, 0, 1 is to be absorbed, delim-
itedDatamust be 0x32.

• If the 7-bit sequence 1, 1, 0, 1, 0, 0, 0 is to be absorbed, delim-
itedDatamust be 0x8B.

Preconditions:

• The sponge function must be in the absorbing phase, i.e., Keccak_SpongeSqueeze()

10

A soĞware interface for Kђѐѐюј

or Keccak_SpongeAbsorbLastFewBits()must not have been called before.

• delimitedData ̸= 0x00

Returns: Zero if successful, 1 otherwise.

A.2.4 Keccak_SpongeSqueeze()

int Keccak_SpongeSqueeze(Keccak_SpongeInstance *spongeInstance, unsigned
char *data, unsigned long long dataByteLen);

Function to squeeze output data from the sponge function. If the sponge function was
in the absorbing phase, this function switches it to the squeezing phase as if Keccak_-
SpongeAbsorbLastFewBits(spongeInstance, 0x01) was called.

spongeInstance Pointer to the sponge instance initialized by Keccak_-
SpongeInitialize().

data Pointer to the buffer where to store the output data.
dataByteLen The number of output bytes desired.

Returns: Zero if successful, 1 otherwise.

A.3 The duplex construction

A.3.1 Keccak_DuplexInitialize()

int Keccak_DuplexInitialize(Keccak_DuplexInstance *duplexInstance, unsigned
int rate, unsigned int capacity);

Function to initialize a duplex object ёѢѝљђѥ[Kђѐѐюј- f [1600], pad10∗1, r].

duplexInstance Pointer to the duplex instance to be initialized.
rate The value of the rate r.
capacity The value of the capacity c.

Preconditions:

• One must have r + c = 1600 in this implementation.

• 3 ≤ rate ≤ 1600, and otherwise the value of the rate is unrestricted.

Returns: Zero if successful, 1 otherwise.

A.3.2 Keccak_Duplexing()

int Keccak_Duplexing(Keccak_DuplexInstance *duplexInstance, const unsigned
char *sigmaBegin, unsigned int sigmaBeginByteLen, unsigned char *Z, unsigned
int ZByteLen, unsigned char delimitedSigmaEnd);

Function tomake a duplexing call to the duplex object initializedwith Keccak_DuplexIni-
tialize().

11

A soĞware interface for Kђѐѐюј

duplexInstance Pointer to the duplex instance initialized by Keccak_-
DuplexInitialize().

sigmaBegin Pointer to the first part of the input σ given as bytes. Trailing bits
are given in delimitedSigmaEnd.

sigmaBeginByteLen The number of input bytes provided in sigmaBegin.
Z Pointer to the buffer where to store the output data Z.
ZByteLen The number of output bytes desired for Z. If ZByteLen × 8 is

greater than the rate r, the last byte contains only r mod 8 bits, in
the least significant bits.

delimitedSigmaEnd Byte containing from 0 to 7 trailing bits that must be appended
to the input data in sigmaBegin. These n = |σ| mod 8 bits must
be in the least significant bit positions. These bits must be delim-
ited with a bit 1 at position n (counting from 0=LSB to 7=MSB)
and followed by bits 0 from position n + 1 to position 7. Some
examples:

• If |σ| is a multiple of 8, then delimitedSigmaEnd must be
0x01.

• If |σ| mod 8 is 1 and the last bit is 1 then delimitedSig-
maEndmust be 0x03.

• If |σ| mod 8 is 4 and the last 4 bits are 0,0,0,1 then delimit-
edSigmaEndmust be 0x18.

• If |σ| mod 8 is 6 and the last 6 bits are 1,1,1,0,0,1 then de-
limitedSigmaEndmust be 0x67.

The input bits σ are the result of the concatenation of the bytes in sigmaBegin and the bits
in delimitedSigmaEnd before the delimiter.

Preconditions:

• delimitedSigmaEnd ̸= 0x00

• sigmaBeginByteLen× 8 + n ≤ r − 2

• ZByteLen ≤ ⌈ r
8⌉

Returns: Zero if successful, 1 otherwise.

12

	Overview of the proposed interface
	Permutation and state management
	The sponge construction
	The duplex construction

	Revisiting the Keccak implementations
	Refinements and perspectives
	Considering parallel evaluations
	Mode-specific features

	Interface used in the “Keccak Code Package”
	Permutation and state management
	KeccakF1600_Initialize()
	KeccakF1600_StateInitialize()
	KeccakF1600_StateXORBytesInLane()
	KeccakF1600_StateXORLanes()
	KeccakF1600_StateComplementBit()
	KeccakF1600_StatePermute()
	KeccakF1600_StateExtractBytesInLane()
	KeccakF1600_StateExtractLanes()
	KeccakF1600_StateXORPermuteExtract()

	The sponge construction
	Keccak_SpongeInitialize()
	Keccak_SpongeAbsorb()
	Keccak_SpongeAbsorbLastFewBits()
	Keccak_SpongeSqueeze()

	The duplex construction
	Keccak_DuplexInitialize()
	Keccak_Duplexing()

