Skip to main content

Advertisement

Log in

Polynomial Eulerian Shape Distributions

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In this paper a new approach is derived in the context of shape analysis. The so called polynomial Eulerian shape theory solves an open problem proposed in [27] about the construction of certain shape density involving Euler hypergeometric functions of matrix arguments. The associated distribution is obtained by a connection between the required shape invariants and a known result on canonical correlations published in 1963. As usual in matrix variate statistical shape theory, the densities are expressed in terms of infinite series of zonal polynomials. However, if we consider certain parametric subspace for the parity of the number of landmarks, the computational problem can be solved analytically by deriving the Eulerian matrix relation of two matrix arguments. Under that restriction, the analysis of classical landmark data is based on polynomial distribution with small degree. Finally, a methodology to compare Eulerian shape and landmark discrimination under equivalent classes is proposed and applied in machine vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (China (P.R.))

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. E. Arias, F. J. Caro-Lopera, E. Florez, and J. F. Perez-Torres, ‘‘Two Novel Approaches Based on the Thompson Theory and Shape Analysis for Determination of Equilibrium Structures of Nanoclusters: \(Cu_{8}\), \(Ag_{8}\) and \(Ag_{1}8\) as study cases,’’ Journal of Physics: Conf. Series 1247, 012008 (2019) http://doi.org/10.1088/1742-6596/1247/1/012008

  2. F. J. Caro-Lopera, J. A. Díaz-García, and G. González-Farías, ‘‘Inference in affine shape theory under elliptical models,’’ J Korean Statist Soc. 43, 67–77 (2014). http://doi.org/10.1016/j.jkss.2013.05.004

  3. F. J. Caro-Lopera, J. A. Díaz-García, and G. González-Farías, ‘‘A formula for Jack polynomials of the second order,’’ Appl Math. 34, 113–119 (2007). http://eudml.org/doc/279259

  4. F. J. Caro-Lopera, J. A. Díaz-García, and G. González-Farías, ‘‘Inference in statistical shape theory: Elliptical configuration densities,’’ J Statist Res. 43 (1),1–19 (2009).

  5. F. J. Caro-Lopera, J. A. Díaz-García, and G. González-Farías, ‘‘Noncentral elliptical configuration density,’’ J Multivariate Anal. 101, 32–43 (2010). http://doi.org/10.1016/j.jmva.2009.03.004

  6. F. J. Caro-Lopera, G. González-Farías, and N. Balakrishnan, ‘‘Determinants, permanents and some applications to statistical shape theory,’’ J Multivariate Anal. 114, 29–39 (2013). http://doi.org/10.1016/j.jmva.2012.07.008

  7. F. J. Caro-Lopera, G. González-Farías, and N. Balakrishnan, ‘‘On Generalized Wishart Distributions - I: Likelihood Ratio Test for Homogeneity of Covariance Matrices,’’ Sankhyā A, 76A (2),179–194 (2014a). http://doi.org/10.1007/s13171-013-0047-7

  8. F. J. Caro-Lopera, G. González-Farías, and N. Balakrishnan, ‘‘On generalized Wishart distribution - II: Spherecity test,’’ Sankhyā A, 76A (2), 195–218 (2014b). http://doi.org/10.1007/s13171-013-0049-5

  9. F. J. Caro-Lopera, ‘‘The impossibility of a recurrence construction of the invariant polynomials by using the Laplace-Beltrami operator,’’ Far East Journal of Mathematical Sciences 100 (8), 1265–1288 (2016). http://doi.org/10.17654/MS100081265

    Article  MATH  Google Scholar 

  10. F. J. Caro-Lopera, ‘‘Families of computable matrix-variate polynomial distributions and applications,’’ Far East Journal of Mathematical Sciences 108 (2), 285–325 (2018). http://dx.doi.org/10.17654/MS108020285

    Article  MATH  Google Scholar 

  11. A. C. Constantine, ‘‘Noncentral distribution problems in multivariate analysis,’’ Ann Math Statist. 34, 1270–1285 (1963). http://www.jstor.org/stable/2238338

    Article  MathSciNet  MATH  Google Scholar 

  12. A. W. Davis, ‘‘Invariant polynomials with two matrix arguments extending the zonal polynomials: Applications to multivariate distribution theory,’’ Ann. Inst. Stat. Math. 31, 465–485 (1979). http://doi.org/10.1007/BF02480302

    Article  MathSciNet  MATH  Google Scholar 

  13. A. W. Davis, Polynomials of Matrix Arguments, in: Encyclopedia of Statistical Sciences, S. Kotz, N. Balakrishnan, C. B. Read, and B. Vidakovic, eds. (Hoboken: Wiley, 2006). http://doi.org/10.1002/0471667196.ess2017.pub2

    Book  MATH  Google Scholar 

  14. J. A. Díaz-García and F. J. Caro-Lopera, ‘‘About test criteria in multivariate analysis,’’ Braz J Probab Stat. 22 (1), 35–59 (2008). http://www.jstor.org/stable/43601105

  15. J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Statistical theory of shape under elliptical models and singular value decompositions,’’ J Multivariate Anal. 103 (1), 77–92 (2012a). http://doi.org/10.1016/j.jmva.2011.06.010

  16. J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Generalised shape theory via SV decomposition,’’ Metrika 75, 541–565 (2012b).

  17. J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Statistical theory of shape under elliptical models via QR decomposition,’’ Statistics 48, 456–472 (2014). http://doi.org/10.1080/02331888.2013.801973

  18. J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Elliptical affine shape distributions for real normed division algebras,’’ J Multivariate Anal. 144, 139-149 (2016). http://doi.org/10.1016/j.jmva.2015.11.003

  19. J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Estimation of mean form and mean form difference under elliptical laws.’’ Electron. J. Statist. 11 (1) 2424–2460, (2017). http://doi.org/10.1214/17-EJS1289

  20. J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Statistical theory of shape under elliptical models via polar decompositions,’’ Sankhyā A 81, 445–465 (2019). http://doi.org/10.1007/s13171-018-0132-z

  21. J. A. Díaz-García, J. R. Gutiérrez, and R. Ramos-Quiroga, ‘‘Size-and-shape cone, shape disk and configuration densities for the elliptical models,’’ Braz J Probab Stat. 17, 135–146 (2003). http://www.jstor.org/stable/43601030

  22. C. Domokos and Z. Kato, ‘‘Parametric estimation of affine deformations of planar shapes,’’ Pattern Recognition, 43, 569–578 (2010). http://doi.org/10.1016/j.patcog.2009.08.013

    Article  MATH  Google Scholar 

  23. I. L. Dryden and K. V. Mardia, Statistical shape analysis, John Wiley and Sons, Chichester, 1998.

    MATH  Google Scholar 

  24. O. Ecaberth and J. Thiran, ‘‘Adaptative Hough transform for the detection of natural shapes under weak affine transformations,’’ Pattern Recognition Lett. 25, 1411–1419 (2004). http://doi.org/10.1016/j.patrec.2004.05.009

    Article  MATH  Google Scholar 

  25. C. A. Glasbey and K. V. Mardia, ‘‘A penalized likelihood approach to image warping,’’ J. R. Stat. Soc. Ser. B Stat. Methodol. 63 Part 3, 465–514 (2001). http://doi.org/10.1111/1467-9868.00295

    Article  MATH  Google Scholar 

  26. C. R. Goodall, ‘‘Procustes methods in the statistical analysis of shape (with discussion),’’ J. R. Stat. Soc. Ser. B Stat. Methodol. 53, 285-339 (1991). http://doi.org/10.1111/j.2517-6161.1991.tb01825.x

    Article  MATH  Google Scholar 

  27. C. R. Goodall and K. V. Mardia, ‘‘Multivariate aspects of shape theory,’’ Ann. Statist. 21, 848–866 (1993). http://doi.org/10.1214/aos/1176349154

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Groisser and H. Tagare, ‘‘On the Topology and Geometry of Spaces of Affine Shapes,’’ J. Math. Imaging Vision 34, 222–233 (2009). http://doi.org/10.1007/s10851-009-0143-4

    Article  MathSciNet  MATH  Google Scholar 

  29. C. S. Herz, ‘‘Bessel functions of matrix argument,’’ Ann. Math. 61, 474–523 (1955). http://doi.org/10.2307/1969810

    Article  MathSciNet  MATH  Google Scholar 

  30. G. W. Horgan, A. Creasey, and B. Fenton, ‘‘Superimposing two dimensional gels to study genetic variation in malaria parasites,’’ Electrophoresis, 13, 871–875 (1992). http://doi.org/10.1002/elps.11501301189

    Article  Google Scholar 

  31. A. T. James, ‘‘Distributions of matrix variate and latent roots derived from normal samples,’’ Ann. Math. Statist. 35, 475–501 (1964). http://doi.org/10.1214/aoms/1177703550

    Article  MathSciNet  MATH  Google Scholar 

  32. D. G. Kendall, D. Barden, T. K. Carne, and H. Le, Shape and Shape theory, (John Wiley and Sons Ltd., Chichester, 1999).

    Book  MATH  Google Scholar 

  33. J. T. Kent, K. V. Mardia, and C. C. Taylor, Matching problems for unlabelled configurations, In: Aykroyd RG, Barber S, Mardia KV, editors. Proceedings in Bioinformatics, Images and Wavelets (Leeds: Leeds University Press; 2004), p. 33–36.

    MATH  Google Scholar 

  34. P. Koev and A. Edelman, ‘‘The efficient evaluation of the hypergeometric function of a matrix argument,’’ Mathe. Comp. 75, 833–846 (2006). http://www.jstor.org/stable/4100313

  35. W. S. Lin and C. H. Fang, ‘‘Synthesized affine invariant function for 2D shape recognition,’’ Pattern Recognition, 40, 1921–1928 (2007). http://doi.org/10.1016/j.patcog.2006.03.021

    Article  MATH  Google Scholar 

  36. T. Lindeberg and J. Garding, ‘‘Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure,’’ Image and Vision Comput. 15, 415–434 (1997). http://doi.org/10.1016/S0262-8856(97)01144-X

    Article  MATH  Google Scholar 

  37. F. Mai, C. Q. Chang, and Y. S. Hung, ‘‘A subspace approach for matching 2D shapes under affine distortions,’’ Pattern Recognition, 44, 210–221 (2011). http://doi.org/10.1016/j.patcog.2010.08.032

    Article  MATH  Google Scholar 

  38. K. V. Mardia and V. Patrangenaru, ‘‘Directions and projective shapes,’’ Ann. Statist. 33 (4), 1666–1699 (2005). http://doi.org/10.1214/009053605000000273

    Article  MathSciNet  MATH  Google Scholar 

  39. K. V. Mardia, C. R. Goodall, and A. Walder, ‘‘Distributions of projective invariants and model-based machine vision,’’ Adv. Appl. Probab. 28, 641–661 (1996). http://doi.org/10.2307/1428174

    Article  MathSciNet  MATH  Google Scholar 

  40. K. V. Mardia, V. Patrangenaru, and S. Sugathadasa, Protein Gels Matching, In: Barber S, Baxter PD, Mardia KV, Walls RE, editores. Quantitative Biology, Shape Analysis, and Wavelets. (Leeds, Leeds University Press, 2005), 163–165.

    MATH  Google Scholar 

  41. F. Mokhtarian and S. Abbasi, ‘‘Shape similarity retrieval under affine transforms,’’ Pattern Recognition 35, 31–41 (2002). http://doi.org/10.1016/S0031-3203(01)00040-1

    Article  MATH  Google Scholar 

  42. R. J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics (John Wiley and Sons, Inc., New York, 2005).

  43. V. Patrangenaru and K. V. Mardia, Affine Shape Analysis and Image Analysis, In: Edited by R. G. Aykroyd, K. V. Mardia, and MJ, editors. Proceedings in Stochastic Geometry, Biological Structure and Images (Langdon, Leeds, Leeds University Press, 2003), 57–62.

  44. J. H. Quintero, A. Mariño, L. Siller, E. Restrepo-Parra, and F. J. Caro-Lopera, ‘‘Rocking curves of gold nitride species prepared by arc pulsed-physical assisted plasma vapor deposition,’’ Surface and Coatings Technology 309, 249-257 (2017), http://doi.org/10.1016/j.surfcoat.2016.11.081.

    Article  Google Scholar 

  45. I. M. Ramirez-Velasquez, A. H. Bedoya-Calle, E. Velez, and F. J. Caro-Lopera, ‘‘Dissociation Mode of the O–H Bond in Betanidin, pKa-Clusterization Prediction, and Molecular Interactions via Shape Theory and DFT Methods,’’ Int. J. Mol. Sci. 24, 2923 (2023). http://doi.org/10.3390/ijms24032923

    Article  Google Scholar 

  46. I. Ramírez-Velásquez, A. H. Bedoya-Calle, E. Vélez, and F. J. Caro-Lopera, ‘‘Shape Theory Applied to Molecular Docking and Automatic Localization of Ligand Binding Pockets in Large Proteins,’’ ACS Omega 7 (50), 45991-46002 (2022). http://doi.org/10.1021/acsomega.2c02227

    Article  Google Scholar 

  47. I. M. Ramirez-Velasquez, E. Velez, A. H. Bedoya-Calle, and F. J. Caro-Lopera, ‘‘Mechanism of Antioxidant Activity of Betanin, Betanidin and Respective C15-Epimers via Shape Theory, Molecular Dynamics, Density Functional Theory and Infrared Spectroscopy,’’ Molecules 27 (6), 2003, (2022). http://doi.org/10.3390/molecules27062003

    Article  Google Scholar 

  48. C. G. Small, The Statistical Theory of Shape, (Springer: New York, 1996).

    Book  MATH  Google Scholar 

  49. G. M. Valencia, J. A. Anaya, E. A. Velasquez, R. Ramo, and F. J. Caro-Lopera, ‘‘About validation-comparison of burned area products,’’ Remote Sensing, 12 (23), 3972 (2020). http://doi.org/10.3390/rs12233972

    Article  Google Scholar 

  50. A. L. Villarreal-Rios, A. H. Bedoya-Calle, F. J. Caro-Lopera, U. Ortiz-Mendez, M. Garcia-Mendez, and F. O. Pérez-Ramírez, ‘‘Ultrathin tunable conducting oxide films for near-IR applications: an introduction to spectroscopy shape theory,’’ SN Appl. Sci. 1, 1553 (2019). http://doi.org/10.1007/s42452-019-1569-y

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the Editor and the anonymous Reviewers for their constructive comments on the preliminary version of this paper. F. Caro was supported by a University of Medellin, in the context of a join research project with University of Bordeaux and University of Toulouse.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco J. Caro-Lopera or José A. Díaz-García.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caro-Lopera, F.J., Díaz-García, J.A. Polynomial Eulerian Shape Distributions. Math. Meth. Stat. 33, 373–391 (2024). http://doi.org/10.3103/S1066530724700194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: http://doi.org/10.3103/S1066530724700194

Keywords: