Abstract
In this paper a new approach is derived in the context of shape analysis. The so called polynomial Eulerian shape theory solves an open problem proposed in [27] about the construction of certain shape density involving Euler hypergeometric functions of matrix arguments. The associated distribution is obtained by a connection between the required shape invariants and a known result on canonical correlations published in 1963. As usual in matrix variate statistical shape theory, the densities are expressed in terms of infinite series of zonal polynomials. However, if we consider certain parametric subspace for the parity of the number of landmarks, the computational problem can be solved analytically by deriving the Eulerian matrix relation of two matrix arguments. Under that restriction, the analysis of classical landmark data is based on polynomial distribution with small degree. Finally, a methodology to compare Eulerian shape and landmark discrimination under equivalent classes is proposed and applied in machine vision.





Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.REFERENCES
E. Arias, F. J. Caro-Lopera, E. Florez, and J. F. Perez-Torres, ‘‘Two Novel Approaches Based on the Thompson Theory and Shape Analysis for Determination of Equilibrium Structures of Nanoclusters: \(Cu_{8}\), \(Ag_{8}\) and \(Ag_{1}8\) as study cases,’’ Journal of Physics: Conf. Series 1247, 012008 (2019) http://doi.org/10.1088/1742-6596/1247/1/012008
F. J. Caro-Lopera, J. A. Díaz-García, and G. González-Farías, ‘‘Inference in affine shape theory under elliptical models,’’ J Korean Statist Soc. 43, 67–77 (2014). http://doi.org/10.1016/j.jkss.2013.05.004
F. J. Caro-Lopera, J. A. Díaz-García, and G. González-Farías, ‘‘A formula for Jack polynomials of the second order,’’ Appl Math. 34, 113–119 (2007). http://eudml.org/doc/279259
F. J. Caro-Lopera, J. A. Díaz-García, and G. González-Farías, ‘‘Inference in statistical shape theory: Elliptical configuration densities,’’ J Statist Res. 43 (1),1–19 (2009).
F. J. Caro-Lopera, J. A. Díaz-García, and G. González-Farías, ‘‘Noncentral elliptical configuration density,’’ J Multivariate Anal. 101, 32–43 (2010). http://doi.org/10.1016/j.jmva.2009.03.004
F. J. Caro-Lopera, G. González-Farías, and N. Balakrishnan, ‘‘Determinants, permanents and some applications to statistical shape theory,’’ J Multivariate Anal. 114, 29–39 (2013). http://doi.org/10.1016/j.jmva.2012.07.008
F. J. Caro-Lopera, G. González-Farías, and N. Balakrishnan, ‘‘On Generalized Wishart Distributions - I: Likelihood Ratio Test for Homogeneity of Covariance Matrices,’’ Sankhyā A, 76A (2),179–194 (2014a). http://doi.org/10.1007/s13171-013-0047-7
F. J. Caro-Lopera, G. González-Farías, and N. Balakrishnan, ‘‘On generalized Wishart distribution - II: Spherecity test,’’ Sankhyā A, 76A (2), 195–218 (2014b). http://doi.org/10.1007/s13171-013-0049-5
F. J. Caro-Lopera, ‘‘The impossibility of a recurrence construction of the invariant polynomials by using the Laplace-Beltrami operator,’’ Far East Journal of Mathematical Sciences 100 (8), 1265–1288 (2016). http://doi.org/10.17654/MS100081265
F. J. Caro-Lopera, ‘‘Families of computable matrix-variate polynomial distributions and applications,’’ Far East Journal of Mathematical Sciences 108 (2), 285–325 (2018). http://dx.doi.org/10.17654/MS108020285
A. C. Constantine, ‘‘Noncentral distribution problems in multivariate analysis,’’ Ann Math Statist. 34, 1270–1285 (1963). http://www.jstor.org/stable/2238338
A. W. Davis, ‘‘Invariant polynomials with two matrix arguments extending the zonal polynomials: Applications to multivariate distribution theory,’’ Ann. Inst. Stat. Math. 31, 465–485 (1979). http://doi.org/10.1007/BF02480302
A. W. Davis, Polynomials of Matrix Arguments, in: Encyclopedia of Statistical Sciences, S. Kotz, N. Balakrishnan, C. B. Read, and B. Vidakovic, eds. (Hoboken: Wiley, 2006). http://doi.org/10.1002/0471667196.ess2017.pub2
J. A. Díaz-García and F. J. Caro-Lopera, ‘‘About test criteria in multivariate analysis,’’ Braz J Probab Stat. 22 (1), 35–59 (2008). http://www.jstor.org/stable/43601105
J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Statistical theory of shape under elliptical models and singular value decompositions,’’ J Multivariate Anal. 103 (1), 77–92 (2012a). http://doi.org/10.1016/j.jmva.2011.06.010
J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Generalised shape theory via SV decomposition,’’ Metrika 75, 541–565 (2012b).
J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Statistical theory of shape under elliptical models via QR decomposition,’’ Statistics 48, 456–472 (2014). http://doi.org/10.1080/02331888.2013.801973
J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Elliptical affine shape distributions for real normed division algebras,’’ J Multivariate Anal. 144, 139-149 (2016). http://doi.org/10.1016/j.jmva.2015.11.003
J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Estimation of mean form and mean form difference under elliptical laws.’’ Electron. J. Statist. 11 (1) 2424–2460, (2017). http://doi.org/10.1214/17-EJS1289
J. A. Díaz-García and F. J. Caro-Lopera, ‘‘Statistical theory of shape under elliptical models via polar decompositions,’’ Sankhyā A 81, 445–465 (2019). http://doi.org/10.1007/s13171-018-0132-z
J. A. Díaz-García, J. R. Gutiérrez, and R. Ramos-Quiroga, ‘‘Size-and-shape cone, shape disk and configuration densities for the elliptical models,’’ Braz J Probab Stat. 17, 135–146 (2003). http://www.jstor.org/stable/43601030
C. Domokos and Z. Kato, ‘‘Parametric estimation of affine deformations of planar shapes,’’ Pattern Recognition, 43, 569–578 (2010). http://doi.org/10.1016/j.patcog.2009.08.013
I. L. Dryden and K. V. Mardia, Statistical shape analysis, John Wiley and Sons, Chichester, 1998.
O. Ecaberth and J. Thiran, ‘‘Adaptative Hough transform for the detection of natural shapes under weak affine transformations,’’ Pattern Recognition Lett. 25, 1411–1419 (2004). http://doi.org/10.1016/j.patrec.2004.05.009
C. A. Glasbey and K. V. Mardia, ‘‘A penalized likelihood approach to image warping,’’ J. R. Stat. Soc. Ser. B Stat. Methodol. 63 Part 3, 465–514 (2001). http://doi.org/10.1111/1467-9868.00295
C. R. Goodall, ‘‘Procustes methods in the statistical analysis of shape (with discussion),’’ J. R. Stat. Soc. Ser. B Stat. Methodol. 53, 285-339 (1991). http://doi.org/10.1111/j.2517-6161.1991.tb01825.x
C. R. Goodall and K. V. Mardia, ‘‘Multivariate aspects of shape theory,’’ Ann. Statist. 21, 848–866 (1993). http://doi.org/10.1214/aos/1176349154
D. Groisser and H. Tagare, ‘‘On the Topology and Geometry of Spaces of Affine Shapes,’’ J. Math. Imaging Vision 34, 222–233 (2009). http://doi.org/10.1007/s10851-009-0143-4
C. S. Herz, ‘‘Bessel functions of matrix argument,’’ Ann. Math. 61, 474–523 (1955). http://doi.org/10.2307/1969810
G. W. Horgan, A. Creasey, and B. Fenton, ‘‘Superimposing two dimensional gels to study genetic variation in malaria parasites,’’ Electrophoresis, 13, 871–875 (1992). http://doi.org/10.1002/elps.11501301189
A. T. James, ‘‘Distributions of matrix variate and latent roots derived from normal samples,’’ Ann. Math. Statist. 35, 475–501 (1964). http://doi.org/10.1214/aoms/1177703550
D. G. Kendall, D. Barden, T. K. Carne, and H. Le, Shape and Shape theory, (John Wiley and Sons Ltd., Chichester, 1999).
J. T. Kent, K. V. Mardia, and C. C. Taylor, Matching problems for unlabelled configurations, In: Aykroyd RG, Barber S, Mardia KV, editors. Proceedings in Bioinformatics, Images and Wavelets (Leeds: Leeds University Press; 2004), p. 33–36.
P. Koev and A. Edelman, ‘‘The efficient evaluation of the hypergeometric function of a matrix argument,’’ Mathe. Comp. 75, 833–846 (2006). http://www.jstor.org/stable/4100313
W. S. Lin and C. H. Fang, ‘‘Synthesized affine invariant function for 2D shape recognition,’’ Pattern Recognition, 40, 1921–1928 (2007). http://doi.org/10.1016/j.patcog.2006.03.021
T. Lindeberg and J. Garding, ‘‘Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure,’’ Image and Vision Comput. 15, 415–434 (1997). http://doi.org/10.1016/S0262-8856(97)01144-X
F. Mai, C. Q. Chang, and Y. S. Hung, ‘‘A subspace approach for matching 2D shapes under affine distortions,’’ Pattern Recognition, 44, 210–221 (2011). http://doi.org/10.1016/j.patcog.2010.08.032
K. V. Mardia and V. Patrangenaru, ‘‘Directions and projective shapes,’’ Ann. Statist. 33 (4), 1666–1699 (2005). http://doi.org/10.1214/009053605000000273
K. V. Mardia, C. R. Goodall, and A. Walder, ‘‘Distributions of projective invariants and model-based machine vision,’’ Adv. Appl. Probab. 28, 641–661 (1996). http://doi.org/10.2307/1428174
K. V. Mardia, V. Patrangenaru, and S. Sugathadasa, Protein Gels Matching, In: Barber S, Baxter PD, Mardia KV, Walls RE, editores. Quantitative Biology, Shape Analysis, and Wavelets. (Leeds, Leeds University Press, 2005), 163–165.
F. Mokhtarian and S. Abbasi, ‘‘Shape similarity retrieval under affine transforms,’’ Pattern Recognition 35, 31–41 (2002). http://doi.org/10.1016/S0031-3203(01)00040-1
R. J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics (John Wiley and Sons, Inc., New York, 2005).
V. Patrangenaru and K. V. Mardia, Affine Shape Analysis and Image Analysis, In: Edited by R. G. Aykroyd, K. V. Mardia, and MJ, editors. Proceedings in Stochastic Geometry, Biological Structure and Images (Langdon, Leeds, Leeds University Press, 2003), 57–62.
J. H. Quintero, A. Mariño, L. Siller, E. Restrepo-Parra, and F. J. Caro-Lopera, ‘‘Rocking curves of gold nitride species prepared by arc pulsed-physical assisted plasma vapor deposition,’’ Surface and Coatings Technology 309, 249-257 (2017), http://doi.org/10.1016/j.surfcoat.2016.11.081.
I. M. Ramirez-Velasquez, A. H. Bedoya-Calle, E. Velez, and F. J. Caro-Lopera, ‘‘Dissociation Mode of the O–H Bond in Betanidin, pKa-Clusterization Prediction, and Molecular Interactions via Shape Theory and DFT Methods,’’ Int. J. Mol. Sci. 24, 2923 (2023). http://doi.org/10.3390/ijms24032923
I. Ramírez-Velásquez, A. H. Bedoya-Calle, E. Vélez, and F. J. Caro-Lopera, ‘‘Shape Theory Applied to Molecular Docking and Automatic Localization of Ligand Binding Pockets in Large Proteins,’’ ACS Omega 7 (50), 45991-46002 (2022). http://doi.org/10.1021/acsomega.2c02227
I. M. Ramirez-Velasquez, E. Velez, A. H. Bedoya-Calle, and F. J. Caro-Lopera, ‘‘Mechanism of Antioxidant Activity of Betanin, Betanidin and Respective C15-Epimers via Shape Theory, Molecular Dynamics, Density Functional Theory and Infrared Spectroscopy,’’ Molecules 27 (6), 2003, (2022). http://doi.org/10.3390/molecules27062003
C. G. Small, The Statistical Theory of Shape, (Springer: New York, 1996).
G. M. Valencia, J. A. Anaya, E. A. Velasquez, R. Ramo, and F. J. Caro-Lopera, ‘‘About validation-comparison of burned area products,’’ Remote Sensing, 12 (23), 3972 (2020). http://doi.org/10.3390/rs12233972
A. L. Villarreal-Rios, A. H. Bedoya-Calle, F. J. Caro-Lopera, U. Ortiz-Mendez, M. Garcia-Mendez, and F. O. Pérez-Ramírez, ‘‘Ultrathin tunable conducting oxide films for near-IR applications: an introduction to spectroscopy shape theory,’’ SN Appl. Sci. 1, 1553 (2019). http://doi.org/10.1007/s42452-019-1569-y
ACKNOWLEDGMENTS
The authors wish to thank the Editor and the anonymous Reviewers for their constructive comments on the preliminary version of this paper. F. Caro was supported by a University of Medellin, in the context of a join research project with University of Bordeaux and University of Toulouse.
Funding
This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare that they have no conflicts of interest.
Additional information
Publisher’s Note.
Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
AI tools may have been used in the translation or editing of this article.
About this article
Cite this article
Caro-Lopera, F.J., Díaz-García, J.A. Polynomial Eulerian Shape Distributions. Math. Meth. Stat. 33, 373–391 (2024). http://doi.org/10.3103/S1066530724700194
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: http://doi.org/10.3103/S1066530724700194