Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of Computational Electronics
  3. Article

Role of Carrier Capture in Microscopic Simulation of Multi-Quantum-Well Semiconductor Laser Diodes

  • Published: July 2002
  • Volume 1, pages 113–118, (2002)
  • Cite this article
Download PDF

Access provided by China Pharmaceutical University

Journal of Computational Electronics Aims and scope Submit manuscript
Role of Carrier Capture in Microscopic Simulation of Multi-Quantum-Well Semiconductor Laser Diodes
Download PDF
  • M.S. Hybertsen1,
  • B. Witzigmann2,
  • M.A. Alam1 &
  • …
  • R.K. Smith1 
  • 69 Accesses

  • Explore all metrics

Abstract

Microscopic laser simulation for multi-quantum-well devices must include conventional carrier transport, properties of carriers bound in the quantum wells, and the photon modes in the optical cavity. Physical models unique to the laser simulation problem include capture of carriers into the quantum wells and stimulated emission, both fundamentally requiring quantum mechanical calculations. The implementation of a semiclassical carrier capture model into a fully self-consistent laser simulator is discussed. The impact of the capture process is illustrated for a two-quantum-well laser.

Article PDF

Download to read the full article text

Similar content being viewed by others

Influence of carrier transport on modulation characteristics of quantum-well semiconductor lasers

Article 30 June 2023

Multi-dimensional Modeling and Simulation of Semiconductor Nanophotonic Devices

Chapter © 2020

Partially coherent electron transport in terahertz quantum cascade lasers based on a Markovian master equation for the density matrix

Article 01 August 2016

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Diode Lasers
  • Laser Dynamics
  • Laser Technology
  • Quantum Cascade Lasers
  • Quantum Simulations
  • Semiconductor Lasers
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Alam M.A., Hybertsen M.S., Smith R.K., and Baraff G.A. 2000. IEEE Trans. on Electron Devices 47: 1917.

    Google Scholar 

  • Alam M.A., Hybertsen M.S., Smith R.K., Baraff G.A., and Pinto M.R. 1997. In: Osinski M. and Chow W. (Eds.), Physics and Simulation of Optoelectronic Devices V, Proceedings of SPIE, Vol. 2994, p. 709.

  • Baraff G.A. 1997. Phys. Rev. B 55: 10745.

    Google Scholar 

  • Baraff G.A. 1998. Phys. Rev. B 58: 13799

    Google Scholar 

  • Esquivias I., Weisser S., Romero B., Ralston J.D., and Rosenzweig J. 1999. IEEE J. of Quantum Electron.35: 635.

    Google Scholar 

  • Grupen M. and Hess K. 1998. IEEE J. Quantum Electron 34: 120.

    Google Scholar 

  • Hybertsen M.S., Alam M.A., Baraff G.A., Smith R.K., Shtengel G.E., Reynolds C.L. Jr., and Belenky. G.L. 2000. In: Binder R.H., Blood P., and Osinski M. (Eds.), Physics and Simulation of Optoelectronic Devices VIII, Proceedings of SPIE, Vol.3944, p. 486.

  • Hybertsen M.S., Alam M.A., Shtengel G.E., Belenky G.L., Reynolds C.L., Smith R.K., Baraff G.A., Kazarinov R.F., Wynn J.D., and Smith L.E. 1999. In: Blood P., Ishibashi A., and Osinski M. (Eds.), Physics and Simulation of Optoelectronic Devices VII, Proceedings of SPIE, Vol. 3625, p. 524.

  • Li Z-M., Dzurko K.M., Delage A., and McAlister S.P. 1992. IEEE J. Quantum Electron. 28: 792.

    Google Scholar 

  • Nagarajan R., Ishikawa M., Fukushima T., Geels R.S., and Bowers.E. IEEE J. Quantum Electron. 28: 1990.

  • Piprek J., Abraham P., and Bowers J.E. 2000. IEEE J. of Quantum Electron. 36: 366.

    Google Scholar 

  • Register L.F. and Hess K. 1997. Appl. Phys. Lett. 71: 1222.

    Google Scholar 

  • Tessler N. and Eisenstein G. 1993. IEEE J. Quantum Electron. 29: 1586.

    Google Scholar 

  • Witzigmann B., Hybertsen M.S., Reynolds C.L., Belenky G.L., Shterengas L., and Shtengel G.E. unpublished.

  • Witzigmann B., Witzig A., and Fichtner W. 2000. IEEE Trans. on Electron Devices 47: 1926

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Agere Systems, 600 Mountain Ave., Murray Hill, NJ, 07974, USA

    M.S. Hybertsen, M.A. Alam & R.K. Smith

  2. Agere Systems, Alhambra, CA, 91803, USA

    B. Witzigmann

Authors
  1. M.S. Hybertsen
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. B. Witzigmann
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. M.A. Alam
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. R.K. Smith
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to M.S. Hybertsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hybertsen, M., Witzigmann, B., Alam, M. et al. Role of Carrier Capture in Microscopic Simulation of Multi-Quantum-Well Semiconductor Laser Diodes. Journal of Computational Electronics 1, 113–118 (2002). http://doi.org/10.1023/A:1020732215449

Download citation

  • Issue Date: July 2002

  • DOI: http://doi.org/10.1023/A:1020732215449

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • semiconductor laser simulation
  • quantum-well laser
  • carrier capture
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

202.119.189.180

Springer ejournal Jiangsu Regional consortium (3902333164) - China Pharmaceutical University (2000352041) - China Institute of Science & Technology acting through National Science and (3000202650) - SLCC Jiangsu eJournals Consortium 2015-2017 (3991465546) - 10786 SLCC Jiangsu (3000803042) - Nature DRAA eJournal National Consortium (3902333280)

Springer Nature

© 2025 Springer Nature