Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Mathematics in Computer Science
  3. Article

Solving the Minimum Common String Partition Problem with the Help of Ants

  • Published: 24 February 2017
  • Volume 11, pages 233–249, (2017)
  • Cite this article
Download PDF

Access provided by China Pharmaceutical University

Mathematics in Computer Science Aims and scope Submit manuscript
Solving the Minimum Common String Partition Problem with the Help of Ants
Download PDF
  • S. M. Ferdous1 &
  • M. Sohel Rahman1 
  • 127 Accesses

  • 4 Citations

  • Explore all metrics

Abstract

In this paper, we consider the problem of finding a minimum common partition of two strings. The problem has its application in Genome Comparison. As it is an NP-hard, discrete combinatorial optimization problem, we employ a metaheuristic technique, namely, MAX–MIN ant system to solve this problem. To achieve better efficiency we first map the problem instance into a special kind of graph. Subsequently, we employ a MAX–MIN ant system to achieve high quality solutions for the problem. Experimental results show the superiority of our algorithm in comparison with the state of art algorithms in the literature. The improvement achieved is also justified by a standard statistical test.

Article PDF

Download to read the full article text

Similar content being viewed by others

Application of Negative Learning Ant Colony Optimization to the Far from Most String Problem

Chapter © 2023

The Minimum Conflict-Free Row Split Problem Revisited

Chapter © 2017

Permutation-constrained Common String Partitions with Applications

Article 30 September 2024

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Algorithms
  • Data Structures
  • Data Structures and Information Theory
  • Discrete Optimization
  • Optimization
  • Problem Solving
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Blum, C.: Beam-ACO for the longest common subsequence problem. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

  2. Blum, C., Lozano, J., Davidson, P.P.: Iterative probabilistic tree search for the minimum common string partition problem. In: Blesa, M., Blum, C., Voß, S. (eds.) Hybrid Metaheuristics, pp. 145–154. Springer, Berlin (2014)

  3. Blum, C., Lozano, J., Davidson, P.P.: Mathematical programming strategies for solving the minimum common string partition problem. Eur. J. Oper. Res. 242, 769–777 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, C., Vallès, M.Y., Blesa, M.J.: An ant colony optimization algorithm for dna sequencing by hybridization. Comput. Oper. Res. 35(11), 3620–3635 (2008)

    Article  MATH  Google Scholar 

  5. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biol. Bioinform. 2(4), 302–315 (2005)

    Article  Google Scholar 

  6. Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common string partition problem. ACM Trans. Algorithms 1(2), 350–366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Damaschke, P.: Minimum common string partition parameterized. In: Crandall, K., Lagergren, J. (eds.) Algorithms in Bioinformatics. Lecture Notes in Computer Science, vol. 5251, pp. 87–98. Springer, Berlin (2008)

  8. Dorigo, M.: Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano, Milan (1992)

  9. Dorigo, M., Colorni, A., Maniezzo, V.: Positive feedback as a search strategy. Technical report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan (1991)

  10. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artif. Life 5(2), 137–172 (1999)

    Article  Google Scholar 

  11. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  12. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

    Article  Google Scholar 

  13. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate (2004)

    MATH  Google Scholar 

  14. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 227–263. Springer, New York (2010)

    Google Scholar 

  15. Ferdous, S., Das, A., Rahman, M., Rahman, M.: Ant colony optimization approach to solve the minimum string cover problem. In: International Conference on Informatics, Electronics and Vision (ICIEV), pp. 741–746. IEEE (2012)

  16. Ferdous, S., Rahman, M.: Solving the minimum common string partition problem with the help of ants. In: Tan, Y., Shi, Y., Mo, H. (eds.) Advances in Swarm Intelligence. Lecture Notes in Computer Science, vol. 7928, pp. 306–313. Springer, Berlin (2013)

  17. Ferdous, S.M., Rahman, M.S.: An integer programming formulation of the minimum common string partition problem. PLoS ONE 10, e0130266 (2015)

    Article  Google Scholar 

  18. Gambardella, L., Dorigo, M.: Ant-q: a reinforcement learning approach to the traveling salesman problem, pp. 252–260. Morgan Kaufmann, Los Altos (1995)

    Google Scholar 

  19. Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partitioning problem: hardness and approximations. Electron. J. Comb. 12(R50) (2005)

  20. Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string partition revisited. In: Proceedings of the 4th International Conference on Frontiers in Algorithmics, FAW’10, pp. 45–52. Springer, Berlin (2010)

  21. Shyu, S.J., Tsai, C.-Y.: Finding the longest common subsequence for multiple biological sequences by ant colony optimization. Comput. Oper. Res. 36(1), 73–91 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stothard, P.: The sequence manipulation suite: Javascript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28(6), 1102 (2000)

    Google Scholar 

  23. Stützle, T., Hoos, H.: Improving the ant system: a detailed report on the max–min ant system. Technical report (1996)

  24. Stützle, T., Hoos, H.: Max–min ant system and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation (ICEC’97), pp. 309–314. IEEE Press (1997)

  25. Stützle, T., Hoos, H.H.: Max–min ant system. Future Gener. Comput. Syst. 16(9), 889–914 (2000)

    Article  MATH  Google Scholar 

  26. Villesen, P.: Fabox: an online FASTA sequence toolbox (2007)

  27. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theor. Biol. 99(1), 1–7 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. AℓEDA Group, Department of CSE, BUET, Dhaka, 1000, Bangladesh

    S. M. Ferdous & M. Sohel Rahman

Authors
  1. S. M. Ferdous
    View author publications

    Search author on:PubMed Google Scholar

  2. M. Sohel Rahman
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to M. Sohel Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdous, S.M., Rahman, M.S. Solving the Minimum Common String Partition Problem with the Help of Ants. Math.Comput.Sci. 11, 233–249 (2017). http://doi.org/10.1007/s11786-017-0293-5

Download citation

  • Received: 22 April 2014

  • Revised: 14 March 2016

  • Accepted: 10 June 2016

  • Published: 24 February 2017

  • Issue Date: June 2017

  • DOI: http://doi.org/10.1007/s11786-017-0293-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Ant Colony Optimization
  • Metaheuristics
  • Graph Algorithms
  • Computational Biology

Mathematics Subject Classification

  • 68
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

202.119.189.180

Springer ejournal Jiangsu Regional consortium (3902333164) - China Institute of Science & Technology acting through National Science and (3000202650) - China Pharmaceutical University (2000352041) - SLCC Jiangsu eJournals Consortium 2015-2017 (3991465546) - 10786 SLCC Jiangsu (3000803042) - Nature DRAA eJournal National Consortium (3902333280)

Springer Nature

© 2025 Springer Nature