Skip to main content

New Results on Absorbing Layers and Radiation Boundary Conditions

  • Chapter
Topics in Computational Wave Propagation

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 31))

  • 1338 Accesses

  • 78 Citations

Abstract

Perhaps the defining feature of waves is the fact that they propagate long distances relative to their characteristic dimension, the wavelength. This allows us to use them to probe the world around us — optically, acoustically, and now at a wide range of wavelengths in a variety of media. For numerical simulations, it is precisely this essential characteristic — the radiation of waves to the far field — that leads to the greatest difficulties. One may view this fundamental difficulty as rooted in the existence of (at least) two widely separated spatial scales. The first are the small scales associated with the wavelengths and the scatterer, and the second is the long distance between the scatterer and the observers.

Supported in part by NSF Grant DMS-9971772 and NASA Contract NAG3-2692. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of NSF or NASA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Abarbanel and D. Gottlieb. A mathematical analysis of the PML method. J. Comput. Phys., 134:357–363,1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Abarbanel, D. Gottheb, and J. Hesthaven. Well-posed perfectly matched layers for advective acoustics. J. Comput. Phys., 154:266–283, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ahland, D. Schulz, and E. Voges. Accurate mesh truncation for Schrödinger equations by a perfecdy matched layer absorber: Application to the calculation of optical spectra. Phys. Rev. B, 60:5109–5112, 1999.

    Article  Google Scholar 

  4. I. Alonso-Mallo and N. Regnera. Weak ill-posedness of spatial discretizations of absorbing boundary condidons for Schrödinger-type equations. SIAM J. Numer. Anal., 40:134–158, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Alpert, L. Greengard, and T. Hagstrom. Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal., 37:1138–1164, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Alpert, L. Greengard, and T. Hagstrom. Nonreflecting boundary conditions for the dme-dependent wave equation. J. Comput. Phys., 180:270–296, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  7. X. Antoine and H. Barucq. Microlocal diagonalization of strictly hyperbolic pseudodifferential systems and application to the design of radiation boundary conditions in electromagnetism. SIAM J. Appl. Math., 61:1877–1905, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.J. Astley. Transient spheroidal elements for unbounded wave problems. Computer Meth. Appl. Mech. Engrg., 164:3–15, 1998.

    Article  MATH  Google Scholar 

  9. R.J. Astley. Infinite elements for wave problems: A review of current formulations and an assessment of accuracy. Int. J. for Numer. Meth. Engrg., 49:951–976, 2000.

    Article  MATH  Google Scholar 

  10. R.J. Astley and J. Hamilton. Infinite elements for transient flow acoustics. Technical Report 2001-2273, AIAA, 2002.

    Google Scholar 

  11. E. Bécache, A.-S. Bonnet-Ben Dhia, and G. Legendre. Perfecdy matched layers for the convected Helmholtz equation. In preparation, 2002.

    Google Scholar 

  12. E. Bécache and P. Joly. On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. Math. Model. and Numer. Anal., 36:87–119, 2002.

    Article  MATH  Google Scholar 

  13. E. Bécache, P. Petropoulos, and S. Gedney. On the long-time behavior of unsplit Perfecdy Matched Layers. Preprint, 2002.

    Google Scholar 

  14. J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114:185–200, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Barry, J. Bielak, and R.C. MacCamy. On absorbing boundary conditions for wave propagation. J. Comput. Phys., 79:449–468, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Bayliss and E. Turkel. Radiation boundary condidons for wave-like equations. Comm. Pure and Appl. Math., 33:707–725, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Chew and W. Weedon. A 3-D perfecdy matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Optical Technol. Lett., 7:599–604, 1994.

    Article  Google Scholar 

  18. F. Collino. High order absorbing boundary condidons for wave propagation models. Straight line boundary and corener cases. In R. Kleinman et al., editor, Proceedings of 2nd Int. Conf. on Math. and Numer. Aspects of Wave Prop. Phen., pp. 161–171. SIAM, 1993.

    Google Scholar 

  19. F. Collino and P. Monk. Optimizing the perfectly matched layer. Computer Meth. Appl. Mech Engrg., 164:157–171, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Collino and P. Monk. The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput., 19:2061–2090, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Colonius, S. Lele, and P. Moin. Boundary condidons for direct computarion of aerodynamic sound generation. AIAA J., 31:1574–1582, 1993.

    Article  MATH  Google Scholar 

  22. T. Colonius and H. Ran. A super-grid scale model for simulating compressible flow on unbounded domains. J. Comput. Phys., 2002. To appear.

    Google Scholar 

  23. J. Diaz and P. Joly. Stabilized perfectly matched layers for advective wave equations. In preparation, 2002.

    Google Scholar 

  24. L. DiMenza. Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain. Numer. Funct. Anal. Optim., 18:759–775, 1997.

    Article  MathSciNet  Google Scholar 

  25. B. Engquist and L. Halpern. Far field boundary condidons for computation over long time. Appl. Numer. Math., 4:21–45, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulafion of waves. Math. Comp., 31:629–651, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Engquist and A. Majda. Radiadon boundary conditions for acoustic and elasdc wave calculations. Comm. Pure and Appl. Math., 32:313–357, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Ergin, B. Shanker, and E. Michielssen. Fast evaluation of three-dimensional transient wave fields using diagonal translation operators. J. Comput. Phys., 146:157–180, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Fevens and H. Jiang. Absorbing boundary conditions for the Schrödinger equation. SIAM J. Sci. Comput., 21:255–282, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Freund and S. Lele. Computer simulation and predicdon of jet noise. In High Speed Jet Flows: Fundamentals and Applications. Taylor Francis, 2001.

    Google Scholar 

  31. T. Geers. Singly and doubly asymptotic computational boundaries. In Computational Methods for Unbounded Domains, pp. 135–142, Dordrecht, the Netherlands, 1998. Kluwer Academic Publishers.

    Google Scholar 

  32. M. Giles. Nonreflecting boundary conditions for Euler equation calculations. AIAA Journal, 28:2050–2058, 1990.

    Article  Google Scholar 

  33. D. Givoli. Exact representations on artificial interfaces and applications in mechanics. Appl. Mech. Rev., 52:333–349, 1999.

    Article  Google Scholar 

  34. D. Givoli and D. Kohen. Non-reflecting boundary conditions based on Kirchoff-type formulae. J. Comput. Phys., 117:102–113, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. Givoli and B. Neta. High-order nonreflecting boundary scheme for time-dependent waves. J. Comput. Phys., 2002. To appear.

    Google Scholar 

  36. D. Givoli, B. Neta, and I. Patlashenko. Finite element solution of exterior timedependent wave problems with high-order boundary treatment. Submitted, 2002.

    Google Scholar 

  37. J. Goodrich and T. Hagstrom. A comparison of two accurate boundary treatments for computational aeroacousiics. In 3rd AIAA/CEAS Aeroacoustics Conference, 1997.

    Google Scholar 

  38. L. Greengard and V. Rokhlin. A new version of the fast mullipole method for the Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.

    Article  MathSciNet  Google Scholar 

  39. M. Grote. Nonreflecting boundary conditions for elaslodynamic scattering. J. Comput. Phys., 161:331–353, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Grote and J. Keller. Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55:280–297, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Grote and J. Keller. Nonreflecting boundary conditions for time dependent scattering. J. Comput. Phys., 127:52–81, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Grote and J. Keller. Nonreflecting boundary conditions for Maxwell’s equations. J. Comput. Phys., 139:327–342, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Grote and J. Keller. Exact nonreflecting boundary conditions for elastic waves. SIAM J. Appl. Math., 60:803–818, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Guddati and J. Tassoulas. Continued-fraction absorbing boundary conditions for the wave equation. J. Comput. Acoust., 8:139–156, 1998.

    MathSciNet  Google Scholar 

  45. T. Hagstrom. On the convergence of local approximations to pseudodifferential operators with applications. In E. Bécache, G. Cohen, R. Joly, and J. Roberts, editors, Proc. of the 3rd Int. Conf. on Math. and Numer. Aspects of Wave Prop. Phen., pp. 474–482. SIAM, 1995.

    Google Scholar 

  46. T. Hagstrom. On high-order radiation boundary conditions. In B. Engquist and G. Kriegsmann, editors, IMA Vol. on Computational Wave Propagation, pp. 1–22, New York, 1996. Springer-Verlag.

    Google Scholar 

  47. T. Hagstrom. Radiation boundary conditions for the numerical simulation of waves. Acta Numerica, 8:47–106, 1999.

    Article  MathSciNet  Google Scholar 

  48. T. Hagstrom and J. Goodrich. Accurate radiation boundary conditions for the linearized Euler equations in Cartesian domains. SIAM J. Sci. Comput., 2002, To appear.

    Google Scholar 

  49. T. Hagstrom and S.I. Hariharan. A formulation of asymptotic and exact boundary conditions using local operators. Appl. Numer. Math., 27:403–416, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Hagstrom, S.I, Hariharan, and R, MacCamy. On the accurate long-time solution of the wave equation on exterior domains: Asymptotic expansions and corrected boundary conditions. Math. Comp., 63:507–539, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  51. T. Hagstrom, S.I. Hariharan, and D. Thompson. High-order radiation boundary conditions the convective wave equation in exterior domains. Submitted.

    Google Scholar 

  52. T. Hagstrom and I. Nazarov. Absorbing layers and radiation boundary conditions for jet flow simulations. Technical Report AIAA 2002-2606, AIAA, 2002.

    Google Scholar 

  53. T. Hagstrom and T. Warburton. High-order radiation boundary conditions for timedomain electromagnetics using unstructured discontinuous Galerkin methods. In preparation, 2002.

    Google Scholar 

  54. E. Hairer, C. Lubich, and M. Schlichte. Fast numerical solution of nonlinear Volterra convolutional equations. SIAM J. Sci. Stat. Comput., 6:532–541, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  55. L. Halpern and J. Rauch. Error analysis for absorbing boundary conditions. Numer. Math., 51:459–467, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Halpern and L. Trefethen. Wide-angle one-way wave equations. J. Acoust. Soc. Am., 84:1397–1404, 1988.

    Article  MathSciNet  Google Scholar 

  57. D. Healy, D. Rockmore, P. Kostelec, and S. Moore. FFTs for the 2-sphere — Improvements and variations. Adv. Appl. Math., 2002. To appear.

    Google Scholar 

  58. J. Hesthaven. On die analysis and construction of perfecdy matched layers for die linearized Euler equations. J. Comput. Phys., 142:129–147, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Hesthaven and T. Warburton. High-order/spectral methods on unstructured grids. I. Time-domain solution of Maxwell’s equadons. J. Comput. Phys., 181:186–221, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  60. R. Higdon. Absorbing boundary condidons for difference approximadons to the multidimensional wave equation. Math. Comp., 47:437–459, 1986.

    MathSciNet  MATH  Google Scholar 

  61. R. Higdon. Numerical absorbing boundary conditions for the wave equadon. Math. Comp., 49:65–90, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Higdon. Radiadon boundary conditions for elastic wave propagation. SIAM J. Numer. Anal., 27:831–870, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Higdon. Absorbing boundary conditions for elastic waves. Geophysics, 56:231–254, 1991.

    Article  Google Scholar 

  64. R. Higdon. Absorbing boundary condidons for acoustic and elastic waves in stratified media. J. Comput. Phys., 101:386–418, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  65. R. Higdon. Radiadon boundary condidons for dispersive waves. SIAM J. Numer. Anal., 31:64–100, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Hohage, F. Schmidt, and L. Zschiedrich. Solving dme-harmonic scattering problems based on the pole condidon: Convergence of the PML mediod. Technical Report ZIB-Report 01-23, Zuse Insdtut Berlin, 2001.

    Google Scholar 

  67. R. Holford. A multipole expansion for the acoustic field exterior to a prolate or oblate spheroid. Preprint, 1998.

    Google Scholar 

  68. F. Hu. On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput. Phys., 129:201–219, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  69. F. Hu. A stable, pertectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys., 173:455–480, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  70. R. Huan and L. Thompson. Accurate radiadon boundary condidons for the timedependent wave equation on unbounded domains. Int. J. Numer. Meth. Engrg., 47:1569–1603, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Israeli and S. Orszag. Approximadon of radiation boundary condidons. J. Comput. Phys., 41:115–135, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  72. S. Jiang. Fast Evaluation of Nonreflecting Boundary Conditions for the Schrödinger Equation. PhD thesis. New York University, 2001.

    Google Scholar 

  73. H.-O. Kreiss and J. Lorenz. Initial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press, New York, 1989.

    MATH  Google Scholar 

  74. M. Lassas and E. Somersalo. On the existence and convergence of the soludon of PML equations. Computing, 60:228–241, 1998.

    Article  MathSciNet  Google Scholar 

  75. M. Lassas and E. Somersalo. Analysis of the PML equadons in general convex geometry. Proc. Roy. Soc. Edinburgh A, 131:1183–1207, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  76. S. Lele. Direct numerical sirauladon of compressible turbulent flows: fundamentals and appHcadons. In A. Hanifi, P. Alfredsson, A. Johansson, and D. Henningson, editors. Transition, Turbulence and Combustion Modelling, Chap. 7. Kluwer, Dordrecht, 1999.

    Google Scholar 

  77. M. Levy. Perfectly matched layer truncadon for parabolic wave equation models. Proc. Roy. Soc. Lond. A, 457:2609–2624, 2001.

    Article  MATH  Google Scholar 

  78. E. Lindman. Free space boundary conditions for the time dependent wave equation. J. Comput. Phys., 18:66–78, 1975.

    Article  MATH  Google Scholar 

  79. J.-L. Lions, J. Métral, and O. Vacus. WclLposed absorbing layer for hyperbolic problems. Numer. Math., 2001. To appear.

    Google Scholar 

  80. C. Lubich and A. Schädle. Fast convolution for non-reflecting boundary conditions. SIAM J. Sci. Comput., 24:161–182, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  81. M. Mohlenkamp. A fast transform for spherical harmonics. J. of Fourier Anal. and Applic., 5:159–184, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  82. P. Petropoulos. Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell’s equations in rectangular, cylindrical and spherical coordinates. SIAM J. Appl. Math., 60:1037–1058, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  83. C. Randall. Absorbing boundary condition for the elastic wave equadon. Geophysics, 53:611–624, 1988.

    Article  Google Scholar 

  84. C. Rowley and T. Colonius. Discretely nonreflecting boundary conditions for linear hyperbolic systems. J. Comput. Phys., 15:500–538, 2000.

    Article  MathSciNet  Google Scholar 

  85. V. Ryabe’nkii. Method of Differenee Potentials and its Applications. Springer-Verlag, New York, 2001.

    Google Scholar 

  86. V. Ryaben’kii, S. Tsynkov, and V. Turchaninov. Global discrete artificial boundary conditions for time-dependent wave propagation, J. Comput. Phys., 174:712–758, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  87. V. Ryaben’kii, S. Tsynkov, and V. Turchaninov. Long-time numerical computation of wave-type solutions driven by moving sources. Appl. Numer. Math., 38:187–222, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  88. A. Schädle. Ein Schneller Faltungsalgorithmus für Nichtreflektierende Randbedingungen. PhD thesis, Eberhard-Karls-Universität Tübingen, 2002.

    Google Scholar 

  89. I. Sofronov. Conditions for complete transparency on the asphere for the threedimensional wave equation. Russian Acad. Sci. Dokl. Math., 46:397–401, 1993.

    MathSciNet  Google Scholar 

  90. I. Sofronov. Artificial boundary conditions of absolute transparency for two-and threedimensional external time-dependent scattering problems. Euro. J. Appl. Math., 9:561–588, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  91. I. Sofronov, Non-reflecting inflow and outflow in wind tunnel for transonic time-accurate simulation. J. Math. Anal. Appl., 221:92–115, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  92. R. Suda and M. Takami. A fast spherical harmonic transform algorithm. Math. Comput., 71:703–715, 2002.

    MathSciNet  MATH  Google Scholar 

  93. C. Tam, L. Auriault, and F. Cambuli. Perfectly matched layer as an absorbing boundary condition for the linearized Euler equadons in open and ducted domains. J. Comput. Phys., 144:213–234, 1998.

    Article  MathSciNet  Google Scholar 

  94. F. Teixeira and W. Chew. PML-FDTD in cylindrical and spherical grids. IEEE Microwave and Guided Wave Lett., 7:285–287, 1997.

    Article  Google Scholar 

  95. F. Teixeira and W. Chew. Systematic derivation of anisotropic PML absorbing media in cyhndrical and spherical coordinates. IEEE Microwave and Guided Wave Lett., 7:371–373, 1997.

    Article  Google Scholar 

  96. F. Teixeira and W. Chew. Analytical derivation of a conformai perfecdy matched absorber for electromagnetic waves. Microwave and Optical Tech. Lett., 17:231–236, 1998.

    Article  Google Scholar 

  97. F. Teixeira and W. Chew. General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microwave and Guided Wave Lett., 8:223–225, 1998.

    Article  Google Scholar 

  98. F. Teixeira and W. Chew. Finite-difference computation of transient electromagnedc waves for cylindrical geometries in complex media. IEEE Trans. on Geosci. and Remote Sensing, 38:1530–1543, 2000.

    Article  Google Scholar 

  99. F. Teixeira, K.-P. Hwang, W. Chew, and J.-M. Jin. Conformal PML-FDTD schemes for electromagnetic field simulations: Adynamic stability study. IEEE Trans. on Ant. Prop., 49:902–907, 2001.

    Article  Google Scholar 

  100. L. Thompson and R. Huan. Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation. Comput. Methods Appl. Mech. Engrg., 187:137–159, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  101. L. Ting and M. Miksis. Exact boundary conditions for scattering problems. J. Acoust. Soc. Am., 80:1825–1827, 1986.

    Article  Google Scholar 

  102. O. Vacus. Mathematical analysis of absorbing boundary conditions for the wave equation: The corner problem. Math. Comput., 2002. To appear.

    Google Scholar 

  103. H. Warchall. Wave propagation at computational domain boundaries. Commun. in Part. Diff. Eq., 16:31–41, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  104. L. Xu. Applications of High-Order Radiation Boundary Conditions. PhD thesis, The University of New Mexico, 2001.

    Google Scholar 

  105. C. Zhao and T. Liu. Non-reflecting artificial boundaries for modelling scalar wave propagation problems in two-dimensional half space. Comput. Meth. Appl. Mech. Engrg., 191:4569–4585, 2002.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagstrom, T. (2003). New Results on Absorbing Layers and Radiation Boundary Conditions. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-55483-4_1

Download citation

  • DOI: http://doi.org/10.1007/978-3-642-55483-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00744-9

  • Online ISBN: 978-3-642-55483-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics