Abstract
Perhaps the defining feature of waves is the fact that they propagate long distances relative to their characteristic dimension, the wavelength. This allows us to use them to probe the world around us — optically, acoustically, and now at a wide range of wavelengths in a variety of media. For numerical simulations, it is precisely this essential characteristic — the radiation of waves to the far field — that leads to the greatest difficulties. One may view this fundamental difficulty as rooted in the existence of (at least) two widely separated spatial scales. The first are the small scales associated with the wavelengths and the scatterer, and the second is the long distance between the scatterer and the observers.
Supported in part by NSF Grant DMS-9971772 and NASA Contract NAG3-2692. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of NSF or NASA.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S. Abarbanel and D. Gottlieb. A mathematical analysis of the PML method. J. Comput. Phys., 134:357–363,1997.
S. Abarbanel, D. Gottheb, and J. Hesthaven. Well-posed perfectly matched layers for advective acoustics. J. Comput. Phys., 154:266–283, 1999.
A. Ahland, D. Schulz, and E. Voges. Accurate mesh truncation for Schrödinger equations by a perfecdy matched layer absorber: Application to the calculation of optical spectra. Phys. Rev. B, 60:5109–5112, 1999.
I. Alonso-Mallo and N. Regnera. Weak ill-posedness of spatial discretizations of absorbing boundary condidons for Schrödinger-type equations. SIAM J. Numer. Anal., 40:134–158, 2002.
B. Alpert, L. Greengard, and T. Hagstrom. Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal., 37:1138–1164, 2000.
B. Alpert, L. Greengard, and T. Hagstrom. Nonreflecting boundary conditions for the dme-dependent wave equation. J. Comput. Phys., 180:270–296, 2002.
X. Antoine and H. Barucq. Microlocal diagonalization of strictly hyperbolic pseudodifferential systems and application to the design of radiation boundary conditions in electromagnetism. SIAM J. Appl. Math., 61:1877–1905, 2001.
R.J. Astley. Transient spheroidal elements for unbounded wave problems. Computer Meth. Appl. Mech. Engrg., 164:3–15, 1998.
R.J. Astley. Infinite elements for wave problems: A review of current formulations and an assessment of accuracy. Int. J. for Numer. Meth. Engrg., 49:951–976, 2000.
R.J. Astley and J. Hamilton. Infinite elements for transient flow acoustics. Technical Report 2001-2273, AIAA, 2002.
E. Bécache, A.-S. Bonnet-Ben Dhia, and G. Legendre. Perfecdy matched layers for the convected Helmholtz equation. In preparation, 2002.
E. Bécache and P. Joly. On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. Math. Model. and Numer. Anal., 36:87–119, 2002.
E. Bécache, P. Petropoulos, and S. Gedney. On the long-time behavior of unsplit Perfecdy Matched Layers. Preprint, 2002.
J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114:185–200, 1994.
A. Barry, J. Bielak, and R.C. MacCamy. On absorbing boundary conditions for wave propagation. J. Comput. Phys., 79:449–468, 1988.
A. Bayliss and E. Turkel. Radiation boundary condidons for wave-like equations. Comm. Pure and Appl. Math., 33:707–725, 1980.
W. Chew and W. Weedon. A 3-D perfecdy matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Optical Technol. Lett., 7:599–604, 1994.
F. Collino. High order absorbing boundary condidons for wave propagation models. Straight line boundary and corener cases. In R. Kleinman et al., editor, Proceedings of 2nd Int. Conf. on Math. and Numer. Aspects of Wave Prop. Phen., pp. 161–171. SIAM, 1993.
F. Collino and P. Monk. Optimizing the perfectly matched layer. Computer Meth. Appl. Mech Engrg., 164:157–171, 1998.
F. Collino and P. Monk. The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput., 19:2061–2090, 1998.
T. Colonius, S. Lele, and P. Moin. Boundary condidons for direct computarion of aerodynamic sound generation. AIAA J., 31:1574–1582, 1993.
T. Colonius and H. Ran. A super-grid scale model for simulating compressible flow on unbounded domains. J. Comput. Phys., 2002. To appear.
J. Diaz and P. Joly. Stabilized perfectly matched layers for advective wave equations. In preparation, 2002.
L. DiMenza. Transparent and absorbing boundary conditions for the Schrödinger equation in a bounded domain. Numer. Funct. Anal. Optim., 18:759–775, 1997.
B. Engquist and L. Halpern. Far field boundary condidons for computation over long time. Appl. Numer. Math., 4:21–45, 1988.
B. Engquist and A. Majda. Absorbing boundary conditions for the numerical simulafion of waves. Math. Comp., 31:629–651, 1977.
B. Engquist and A. Majda. Radiadon boundary conditions for acoustic and elasdc wave calculations. Comm. Pure and Appl. Math., 32:313–357, 1979.
A. Ergin, B. Shanker, and E. Michielssen. Fast evaluation of three-dimensional transient wave fields using diagonal translation operators. J. Comput. Phys., 146:157–180, 1998.
T. Fevens and H. Jiang. Absorbing boundary conditions for the Schrödinger equation. SIAM J. Sci. Comput., 21:255–282, 1999.
J. Freund and S. Lele. Computer simulation and predicdon of jet noise. In High Speed Jet Flows: Fundamentals and Applications. Taylor Francis, 2001.
T. Geers. Singly and doubly asymptotic computational boundaries. In Computational Methods for Unbounded Domains, pp. 135–142, Dordrecht, the Netherlands, 1998. Kluwer Academic Publishers.
M. Giles. Nonreflecting boundary conditions for Euler equation calculations. AIAA Journal, 28:2050–2058, 1990.
D. Givoli. Exact representations on artificial interfaces and applications in mechanics. Appl. Mech. Rev., 52:333–349, 1999.
D. Givoli and D. Kohen. Non-reflecting boundary conditions based on Kirchoff-type formulae. J. Comput. Phys., 117:102–113, 1995.
D. Givoli and B. Neta. High-order nonreflecting boundary scheme for time-dependent waves. J. Comput. Phys., 2002. To appear.
D. Givoli, B. Neta, and I. Patlashenko. Finite element solution of exterior timedependent wave problems with high-order boundary treatment. Submitted, 2002.
J. Goodrich and T. Hagstrom. A comparison of two accurate boundary treatments for computational aeroacousiics. In 3rd AIAA/CEAS Aeroacoustics Conference, 1997.
L. Greengard and V. Rokhlin. A new version of the fast mullipole method for the Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.
M. Grote. Nonreflecting boundary conditions for elaslodynamic scattering. J. Comput. Phys., 161:331–353, 2000.
M. Grote and J. Keller. Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. Appl. Math., 55:280–297, 1995.
M. Grote and J. Keller. Nonreflecting boundary conditions for time dependent scattering. J. Comput. Phys., 127:52–81, 1996.
M. Grote and J. Keller. Nonreflecting boundary conditions for Maxwell’s equations. J. Comput. Phys., 139:327–342, 1998.
M. Grote and J. Keller. Exact nonreflecting boundary conditions for elastic waves. SIAM J. Appl. Math., 60:803–818, 2000.
M. Guddati and J. Tassoulas. Continued-fraction absorbing boundary conditions for the wave equation. J. Comput. Acoust., 8:139–156, 1998.
T. Hagstrom. On the convergence of local approximations to pseudodifferential operators with applications. In E. Bécache, G. Cohen, R. Joly, and J. Roberts, editors, Proc. of the 3rd Int. Conf. on Math. and Numer. Aspects of Wave Prop. Phen., pp. 474–482. SIAM, 1995.
T. Hagstrom. On high-order radiation boundary conditions. In B. Engquist and G. Kriegsmann, editors, IMA Vol. on Computational Wave Propagation, pp. 1–22, New York, 1996. Springer-Verlag.
T. Hagstrom. Radiation boundary conditions for the numerical simulation of waves. Acta Numerica, 8:47–106, 1999.
T. Hagstrom and J. Goodrich. Accurate radiation boundary conditions for the linearized Euler equations in Cartesian domains. SIAM J. Sci. Comput., 2002, To appear.
T. Hagstrom and S.I. Hariharan. A formulation of asymptotic and exact boundary conditions using local operators. Appl. Numer. Math., 27:403–416, 1998.
T. Hagstrom, S.I, Hariharan, and R, MacCamy. On the accurate long-time solution of the wave equation on exterior domains: Asymptotic expansions and corrected boundary conditions. Math. Comp., 63:507–539, 1994.
T. Hagstrom, S.I. Hariharan, and D. Thompson. High-order radiation boundary conditions the convective wave equation in exterior domains. Submitted.
T. Hagstrom and I. Nazarov. Absorbing layers and radiation boundary conditions for jet flow simulations. Technical Report AIAA 2002-2606, AIAA, 2002.
T. Hagstrom and T. Warburton. High-order radiation boundary conditions for timedomain electromagnetics using unstructured discontinuous Galerkin methods. In preparation, 2002.
E. Hairer, C. Lubich, and M. Schlichte. Fast numerical solution of nonlinear Volterra convolutional equations. SIAM J. Sci. Stat. Comput., 6:532–541, 1985.
L. Halpern and J. Rauch. Error analysis for absorbing boundary conditions. Numer. Math., 51:459–467, 1987.
L. Halpern and L. Trefethen. Wide-angle one-way wave equations. J. Acoust. Soc. Am., 84:1397–1404, 1988.
D. Healy, D. Rockmore, P. Kostelec, and S. Moore. FFTs for the 2-sphere — Improvements and variations. Adv. Appl. Math., 2002. To appear.
J. Hesthaven. On die analysis and construction of perfecdy matched layers for die linearized Euler equations. J. Comput. Phys., 142:129–147, 1998.
J. Hesthaven and T. Warburton. High-order/spectral methods on unstructured grids. I. Time-domain solution of Maxwell’s equadons. J. Comput. Phys., 181:186–221, 2002.
R. Higdon. Absorbing boundary condidons for difference approximadons to the multidimensional wave equation. Math. Comp., 47:437–459, 1986.
R. Higdon. Numerical absorbing boundary conditions for the wave equadon. Math. Comp., 49:65–90, 1987.
R. Higdon. Radiadon boundary conditions for elastic wave propagation. SIAM J. Numer. Anal., 27:831–870, 1990.
R. Higdon. Absorbing boundary conditions for elastic waves. Geophysics, 56:231–254, 1991.
R. Higdon. Absorbing boundary condidons for acoustic and elastic waves in stratified media. J. Comput. Phys., 101:386–418, 1992.
R. Higdon. Radiadon boundary condidons for dispersive waves. SIAM J. Numer. Anal., 31:64–100, 1994.
T. Hohage, F. Schmidt, and L. Zschiedrich. Solving dme-harmonic scattering problems based on the pole condidon: Convergence of the PML mediod. Technical Report ZIB-Report 01-23, Zuse Insdtut Berlin, 2001.
R. Holford. A multipole expansion for the acoustic field exterior to a prolate or oblate spheroid. Preprint, 1998.
F. Hu. On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J. Comput. Phys., 129:201–219, 1996.
F. Hu. A stable, pertectly matched layer for linearized Euler equations in unsplit physical variables. J. Comput. Phys., 173:455–480, 2001.
R. Huan and L. Thompson. Accurate radiadon boundary condidons for the timedependent wave equation on unbounded domains. Int. J. Numer. Meth. Engrg., 47:1569–1603, 2000.
M. Israeli and S. Orszag. Approximadon of radiation boundary condidons. J. Comput. Phys., 41:115–135, 1981.
S. Jiang. Fast Evaluation of Nonreflecting Boundary Conditions for the Schrödinger Equation. PhD thesis. New York University, 2001.
H.-O. Kreiss and J. Lorenz. Initial-Boundary Value Problems and the Navier-Stokes Equations. Academic Press, New York, 1989.
M. Lassas and E. Somersalo. On the existence and convergence of the soludon of PML equations. Computing, 60:228–241, 1998.
M. Lassas and E. Somersalo. Analysis of the PML equadons in general convex geometry. Proc. Roy. Soc. Edinburgh A, 131:1183–1207, 2001.
S. Lele. Direct numerical sirauladon of compressible turbulent flows: fundamentals and appHcadons. In A. Hanifi, P. Alfredsson, A. Johansson, and D. Henningson, editors. Transition, Turbulence and Combustion Modelling, Chap. 7. Kluwer, Dordrecht, 1999.
M. Levy. Perfectly matched layer truncadon for parabolic wave equation models. Proc. Roy. Soc. Lond. A, 457:2609–2624, 2001.
E. Lindman. Free space boundary conditions for the time dependent wave equation. J. Comput. Phys., 18:66–78, 1975.
J.-L. Lions, J. Métral, and O. Vacus. WclLposed absorbing layer for hyperbolic problems. Numer. Math., 2001. To appear.
C. Lubich and A. Schädle. Fast convolution for non-reflecting boundary conditions. SIAM J. Sci. Comput., 24:161–182, 2002.
M. Mohlenkamp. A fast transform for spherical harmonics. J. of Fourier Anal. and Applic., 5:159–184, 1999.
P. Petropoulos. Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell’s equations in rectangular, cylindrical and spherical coordinates. SIAM J. Appl. Math., 60:1037–1058, 2000.
C. Randall. Absorbing boundary condition for the elastic wave equadon. Geophysics, 53:611–624, 1988.
C. Rowley and T. Colonius. Discretely nonreflecting boundary conditions for linear hyperbolic systems. J. Comput. Phys., 15:500–538, 2000.
V. Ryabe’nkii. Method of Differenee Potentials and its Applications. Springer-Verlag, New York, 2001.
V. Ryaben’kii, S. Tsynkov, and V. Turchaninov. Global discrete artificial boundary conditions for time-dependent wave propagation, J. Comput. Phys., 174:712–758, 2001.
V. Ryaben’kii, S. Tsynkov, and V. Turchaninov. Long-time numerical computation of wave-type solutions driven by moving sources. Appl. Numer. Math., 38:187–222, 2001.
A. Schädle. Ein Schneller Faltungsalgorithmus für Nichtreflektierende Randbedingungen. PhD thesis, Eberhard-Karls-Universität Tübingen, 2002.
I. Sofronov. Conditions for complete transparency on the asphere for the threedimensional wave equation. Russian Acad. Sci. Dokl. Math., 46:397–401, 1993.
I. Sofronov. Artificial boundary conditions of absolute transparency for two-and threedimensional external time-dependent scattering problems. Euro. J. Appl. Math., 9:561–588, 1998.
I. Sofronov, Non-reflecting inflow and outflow in wind tunnel for transonic time-accurate simulation. J. Math. Anal. Appl., 221:92–115, 1998.
R. Suda and M. Takami. A fast spherical harmonic transform algorithm. Math. Comput., 71:703–715, 2002.
C. Tam, L. Auriault, and F. Cambuli. Perfectly matched layer as an absorbing boundary condition for the linearized Euler equadons in open and ducted domains. J. Comput. Phys., 144:213–234, 1998.
F. Teixeira and W. Chew. PML-FDTD in cylindrical and spherical grids. IEEE Microwave and Guided Wave Lett., 7:285–287, 1997.
F. Teixeira and W. Chew. Systematic derivation of anisotropic PML absorbing media in cyhndrical and spherical coordinates. IEEE Microwave and Guided Wave Lett., 7:371–373, 1997.
F. Teixeira and W. Chew. Analytical derivation of a conformai perfecdy matched absorber for electromagnetic waves. Microwave and Optical Tech. Lett., 17:231–236, 1998.
F. Teixeira and W. Chew. General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microwave and Guided Wave Lett., 8:223–225, 1998.
F. Teixeira and W. Chew. Finite-difference computation of transient electromagnedc waves for cylindrical geometries in complex media. IEEE Trans. on Geosci. and Remote Sensing, 38:1530–1543, 2000.
F. Teixeira, K.-P. Hwang, W. Chew, and J.-M. Jin. Conformal PML-FDTD schemes for electromagnetic field simulations: Adynamic stability study. IEEE Trans. on Ant. Prop., 49:902–907, 2001.
L. Thompson and R. Huan. Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation. Comput. Methods Appl. Mech. Engrg., 187:137–159, 2000.
L. Ting and M. Miksis. Exact boundary conditions for scattering problems. J. Acoust. Soc. Am., 80:1825–1827, 1986.
O. Vacus. Mathematical analysis of absorbing boundary conditions for the wave equation: The corner problem. Math. Comput., 2002. To appear.
H. Warchall. Wave propagation at computational domain boundaries. Commun. in Part. Diff. Eq., 16:31–41, 1991.
L. Xu. Applications of High-Order Radiation Boundary Conditions. PhD thesis, The University of New Mexico, 2001.
C. Zhao and T. Liu. Non-reflecting artificial boundaries for modelling scalar wave propagation problems in two-dimensional half space. Comput. Meth. Appl. Mech. Engrg., 191:4569–4585, 2002.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hagstrom, T. (2003). New Results on Absorbing Layers and Radiation Boundary Conditions. In: Ainsworth, M., Davies, P., Duncan, D., Rynne, B., Martin, P. (eds) Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering, vol 31. Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-55483-4_1
Download citation
DOI: http://doi.org/10.1007/978-3-642-55483-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00744-9
Online ISBN: 978-3-642-55483-4
eBook Packages: Springer Book Archive