Skip to main content

Adaptive Multilevel Monte Carlo Simulation

  • Conference paper
  • First Online:
Numerical Analysis of Multiscale Computations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 82))

  • 1787 Accesses

  • 32 Citations

Abstract

This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of \( \vartheta{\rm(TOL),\, from\,(TOL^{-3})}\), from using a single level version of the adaptive algorithm to \( \vartheta\left( \begin{array}{lll}\left({(TOL^{-1})\,log(TOL)}\right)^2\end{array}\right).\)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik von Schwerin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoel, H., von Schwerin, E., Szepessy, A., Tempone, R. (2012). Adaptive Multilevel Monte Carlo Simulation. In: Engquist, B., Runborg, O., Tsai, YH. (eds) Numerical Analysis of Multiscale Computations. Lecture Notes in Computational Science and Engineering, vol 82. Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-21943-6_10

Download citation

Publish with us

Policies and ethics