

URIs:

Search Web Services Version 1.0
Discussion Document

2 November 2007

http://docs.oasis-open.org/search-ws/v1.0/DiscussionDocument.doc
http://docs.oasis-open.org/search-ws/v1.0/DiscussionDocument.pdf
http://docs.oasis-open.org/search-ws/v1.0/DiscussionDocument.html

Technical Committee:
OASIS Search Web Services TC

Chair(s):
 Ray Denenberg
 Matthew Dovey
Related work:

This specification replaces or supercedes:
• SRU 1.2

This specification is related to:
• ISO 23950
• NISO Z39.92

Status:
This document has no official status. It was prepared by the OASIS Search Web Services TC as a
strawman proposal, for public review, intended to generate discussion. It is not a Committee Draft.

Purpose of this Document
This specification is based on the SRU (Search Retrieve via URL) specification which can be found at
http://www.loc.gov/standards/sru/. It is expected that this standard, when published, will deviate from
SRU. How much it will deviate cannot be predicted at this time. The fact that the SRU spec is used as a
starting point for development should not be cause for concern that this might be an effort to fast track
SRU. The committee hopes to preserve the useful features of SRU, but not to preserve those that are
not considered useful.

The OASIS Technical Committee developing this standard has decided to request OASIS to release this
as a discussion document. Detailed review of this document is premature at this point, but feedback on
the functionality and approach is solicited.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 1 of 65

http://docs.oasis-open.org/search-ws/v1.0/DiscussionDocument.doc
http://docs.oasis-open.org/search-ws/v1.0/DiscussionDocument.pdf
http://docs.oasis-open.org/search-ws/v1.0/DiscussionDocument.html
http://www.loc.gov/standards/sru/

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 2 of 65

Open Issues
There are several current open issues before the committee not reflected in the body of the document.
 There is a wiki for the committee at http://wiki.oasis-open.org/search-ws/FrontPage, and an issues list at
http://wiki.oasis-open.org/search-ws/issues
These issues are summarized here:

1. Binary representation within records
The protocol must support the inclusion of binary objects within records. And external
mechanisms exist to provide this support. The issue is whether the standard needs to define an
explicit mechanism.

2. Parameterized query support

The protocol should support parameterized queries. Should they be supported within CQL,
should CQL be a special case of parameterized query, or should these two be defined separately.

3. OpenSearch
The specification is intended to subsume the OpenSearch functionality. The existing OpenSearch
specification is regarded as a legacy specification and this standard will also and show how the
protocol interoperates with that spec. This has not been sufficiently addressed in this draft.

4. XML/WSDL

The committee determined that it is premature to write XML/WSDL for the protocol, so there is a
stub section with a pointer to the current SRU xml. XML/WSDL will be written later.

5. Operation Parameter
There is a suggestion to eliminate the operation parameter, incorporating it instead in the base
url, in some fashion. (This is not done in this draft.) The reason for the suggestion is that this
parameter is not consistent with REST principles.

6. ATOM (or RSS) as a response schema.
There is a proposal to replace the SRU response schema with ATOM or RSS. The current draft
adds a parameter allowing the client to request an alternative schema. There should be one
schema singled out in the standard that is mandatory. Currently that would be the SRU response
schema, and the proposal is to make ATOM or RSS the single required schema instead.

7. Scan
There is a suggestion to eliminate the Scan operation, and instead represent this functionality via
search/retrieve.

8. XCQL
 There is a suggestion is to eliminate XCQL, which is an XML representation of the CQL query -
it is not used in a request, only in the echoed response. Some impementors find it useful to have
the query echoed in a parsed form. However its existence causes confusion.

9. State
There is discussion within the committee over how stateful the protocol (as currently defined) is.
Some say it is not stateful at all. Others feel that the result set model is stateful. Actually there
are two points of debate: whether the protocol is stateful, and whether it should be.

http://wiki.oasis-open.org/search-ws/FrontPage

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 3 of 65

Notices
Copyright © OASIS® 2007. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", [insert specific trademarked names, abbreviations, etc. here] are trademarks of
OASIS, the owner and developer of this specification, and should be used only to refer to the organization
and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications,
while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-
open.org/who/trademark.php for above guidance.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 4 of 65

Table of Contents
1 Introduction ... 7

1.1 Terminology .. 7
1.2 Normative References .. 7
1.3 Non-Normative References .. 7

2 Search Web Service Overview ... 8
3 Contextual Query Language .. 9

3.1 Query Syntax .. 9
3.1.1 Basic Query Structure ... 9
3.1.2 Search Clause ... 9
3.1.3 Search Term .. 9
3.1.4 Index Name ... 10
3.1.5 Relation ... 10
3.1.6 Relation Modifiers .. 10
3.1.7 Boolean Operators .. 11
3.1.8 Boolean Modifiers .. 11
3.1.9 Proximity Modifiers .. 12
3.1.10 Sorting ... 12
3.1.11 Prefix Assignment ... 13
3.1.12 Case Sensitivity ... 13

3.2 BNF ... 13
3.3 Context Sets ... 14

4 The searchRetrieve operation .. 16
4.1 Request Parameters ... 16
4.2 Response Parameters .. 17
4.3 Version: the “version” Parameter .. 18
4.4 Records ... 18

4.4.1 Record Parameters ... 18
4.4.2 Record Packing ... 19

4.5 Result Sets ... 20
4.5.1 Result Set Model ... 20
4.5.2 resultSetId ... 20
4.5.3 ResultSet Idle Time ... 21

4.6 Diagnostics ... 21
4.6.1 Diagnostic Categories: Fatal vs. Non-fatal, and Surrogate Vs. Non-Surrogate 21
4.6.2 Diagnostic Schema ... 21

4.7 Extensions: the “extraRequestData’, ‘extraResponseData’, and xtraRecordData’ Parameters 23
4.8 Echoing the Request: The “echoedSearchRetrieveRequest” Parameter .. 24

4.8.1 xQuery ... 24
4.8.2 baseUrl .. 24

4.9 Stylesheets: the ‘stylesheet’ Parameter ... 25
5 Scan Operation ... 26

5.1 Request Parameters ... 26
5.2 Response Parameters .. 27

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 5 of 65

5.3 Terms .. 27
5.4 Example Scan Response ... 28

6 The Explain Facility .. 30
6.1 Explain Operation ... 30

6.1.1 Request Parameters ... 30
7 XML and WSDL Files ... 31
8 Transports .. 32

8.1 HTTP Get Binding ... 32
8.1.1 Syntax .. 32
8.1.2 Encoding Issues .. 32
8.1.3 Server Procedure .. 33

8.2 HTTP Post Binding ... 33
8.3 SOAP Binding ... 34

8.3.1 SOAP Requirements ... 34
8.3.2 SOAP Parameter Differences ... 34
8.3.3 Extension Parameters via SOAP ... 35

A. The CQL Context Set ... 36
A.1 Indexes ... 36
A.2 Relations ... 37

A.2.1 Implicit Relations ... 37
A.2.2 Defined Relations .. 38

A.3 Relation Modifiers ... 39
A.3.1 Functional Modifiers .. 39
A.3.2 Term-format Modifiers ... 40
A.3.3 Masking ... 41

A.4 Booleans ... 43
A.5 Boolean Modifiers ... 43

Note about Proximity Units ... 44
B. Diagnostics ... 45
C. NISO Z39.92 (ZeeRex) .. 58
D. OpenSearch ... 60

D.1 OpenSearch Description Document .. 60
D.2 OpenSearch URL Template ... 61
D.3 OpenSearch Response Elements .. 61

E. Authentication, Authorization, and Access Control .. 63
E.1 Authentication ... 63
E.2 Authorization and Access Control .. 63
E.3 IP Address .. 63
Users may be differentiated by the IP address from which they are connecting to the server.
Unfortunately this is unreliable at best due to the increasing use of web proxy systems -- there may be
many users all of which appear to be coming from the same IP address due to a proxy. The advantage
is that it is completely transparent to the client and hence the user, so for a small service may be
appropriate. ... 63
E.4 Basic Authentication ... 63
E.5 Secure Sockets .. 64
E.6 Additional Message Data ... 64

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 6 of 65

E.7 Web Services Security and Security Assertion Markup Language (SAML) Security Tokens 64

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 7 of 65

1 Introduction 1

[All text is normative unless otherwise labeled] 2

3

4
5
6

7

8
9

10

11

12

1.1 Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in [RFC2119].

1.2 Normative References
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.
[Reference] [Full reference citation]

1.3 Non-Normative References
[Reference] [Full reference citation]

http://www.ietf.org/rfc/rfc2119.txt

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 8 of 65

2 Search Web Service Overview 13

 14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35

The Search web service is a means of opening a database to external enquiry in a standardized manner
that facilitates discovery of query and response possibilities and makes it possible for heterogeneous
databases to be queried simultaneously with the same or similar queries. Client software can be easily
configured using a standardized XML explain document that is accessible from the base URL or via the
explain operation. In contrast with protocols such as SQL and XQuery, detailed knowledge of a
database’s structure is not necessary as the explain document contains parsable information on server
defaults, searchable indexes and record schemas that are returned in the response.

Context sets can be made for use with the search web service that define standard index names and
search attributes thus facilitating multi-database searching via either a single or similar searches.
Profiles can be registered combining context sets and record schemas and so ensure inter-operability in a
variety of domains.

Two kinds of enquiry access are defined; search via keywords or phrases that returns a result set of
records and scan via terms that returns a list of terms in an index.

A search or scan can be expressed in a simple URL, enabling a search to be embedded in any web
page. The server may send the results with an accompanying XML style sheet, thus the service can be
widely used in web pages without any underlying programming.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 9 of 65

3 Contextual Query Language 36

CQL, the Contextual Query Language, is a formal language for representing queries to information
retrieval systems such as web indexes, bibliographic catalogs and museum collection information. The
design objective is that queries be human readable and writable, and that the language be intuitive while
maintaining the expressiveness of more complex languages.

37
38
39
40

41
42
43
44
45

46

47

48
49
50
51
52
53
54
55
56
57
58

59

60
61
62
63
64

65

66

67

68

69

70
71
72
73
74

Traditionally, query languages have fallen into two camps: Powerful, expressive languages, not easily
readable nor writable by non-experts (e.g. SQL, PQF, and XQuery);or simple and intuitive languages not
powerful enough to express complex concepts (e.g. CCL and google). CQL tries to combine simplicity
and intuitiveness of expression for simple, every day queries, with the richness of more expressive
languages to accommodate complex concepts when necessary.

3.1 Query Syntax

3.1.1 Basic Query Structure
A CQL query consists of either a single search clause [example a], or multiple search clauses connected
by boolean operators [example b]. It may have a sort specification at the end, following the 'sortBy'
keyword [example c]. In addition it may include prefix assignments which assign short names to context
set identifiers [example d].

Examples:

a. dc.title = fish
b. dc.title = fish or dc.creator = sanderson
c. dc.title = fish sortBy dc.date/sort.ascending
d. > dc = "info:srw/context-sets/1/dc-v1.1" dc.title any fish

3.1.2 Search Clause
A search clause consists of either an index, relation and a search term [example a], or a search term by
itself [example b]. If the clause consists of just a term, then the index is treated as 'cql.serverChoice', and
the relation is treated as '=' [example c]. (Therefore example b and c are semantically equivalent.)

Examples:

a. dc.title = fish
b. fish

c. cql.serverChoice = fish

3.1.3 Search Term
Search terms MAY be enclosed in double quotes [example a], though need not be [example b]. Search
terms MUST be enclosed in double quotes if they contain any of the following characters: < > = / () and
whitespace [example c]. The search term may be an empty string [example d], but must be present in a
search clause. The empty search term has no defined semantics.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 10 of 65

75

76

77

78
79
80

81

82
83
84
85

86

87

88

89

90

91
92
93
94
95
96
97
98

99
100
101
102
103
104
105
106
107
108

109

110
111
112
113
114
115
116
117

Examples:
a. "fish"
b. fish

c. "squirrels fish"
d. “”

3.1.4 Index Name
An index name always includes a base name [example a] and may also include a prefix [example b],
which determines the context set of which the index is a part. The base name and the prefix are
separated by a dot character ('.'). If multiple '.' characters are present, then the first should be treated as
the prefix/base name delimiter. If the prefix is not supplied, it is determined by the server. Examples:

Examples:
a. title any Afish dog@

b. dc.title any Afish dog@

3.1.5 Relation
The relation in a search clause specifies the relationship between the index and search term. It also
always includes a base name [example a] and may also include a prefix providing a context for the
relation [example b]. If a relation does not have a prefix, the context set is 'cql'. If no relation is supplied in
a search clause, then = is assumed, which means that the relation is determined by the server. (As is
noted above, if the relation is omitted then the index MUST also be omitted; the relation is assumed to be
A=@ and the index is assumed to be cql.serverChoice; that is, the server choses both the index and the
relation.)

Examples:
a. dc.title any “fish frog”

Find records where the title (as defined by the Adc@ context set) contains one of the words :fish@,
Afrog@

b. dc.title cql.any “fish frog”
This query has the same meaning as the previous, since the default context set for the relation is
Acql@.

c. dc.title cql.all “fish frog”
Find records where the title contains all of the words :fish@, Afrog@

3.1.6 Relation Modifiers
Relations may be modified by one or more relation modifiers. Relation modifiers always include a base
name, and may include a prefix for a context set [example a] as above. If a prefix is not supplied, the
context set is 'cql'. Relation modifiers are separated from each other and from the relation by forward
slash characters('/'). Whitespace may be present on either side of a '/' character, but the relation plus
modifiers group may not end in a '/' [example b]. Relation modifiers may also have a comparison symbol
and a value. The comparison symbol is any of = < <= > >= <>. The value must obey the same rules for
quoting as search terms, above [example c].
Examples:

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 11 of 65

118
119
120
121

122
123
124
125
126
127
128
129
130
131
132

133

134
135
136
137
138
139

140

141

142

143

144

145
146
147
148
149
150
151
152
153
154

155
156
157

a. dc.title any/relevant fish
The relation modifier Arelevant@ means The server should use a relevancy algorithm for
determining matches and the order of the result set. When the relevant modifier is used, the
actual relation is often not significant.

b. dc.title any/ relevant /cql.string fish

(we need to explain this one or drop it.)

c. title any/rel.algorithm=cori fish

This example is distinguished from example 1 in which the modifier Arelevant@ is from the CQL
context set. In this case the modifier is Aalgorithm=core@, from the rel context set, in essence
meaning use the relevance algorithm Acori@. A description of this context set is available at
http://srw.cheshire3.org/contextSets/rel/

3.1.7 Boolean Operators
Search clauses may be linked by boolean operators. These are: and, or, not and prox [example in
3.1.8]. Note that not is 'and-not' and must not be used as a unary operator. Boolean operators all have
the same precedence; they are evaluated left-to-right. Parentheses may be used to override left-to-right
evaluation [example b].

Examples:

a. dc.title = “monkey house” and dc.creator = vonnegut

b. dc.title = “monkey house” not dc.creator = vonnegut

c. dc.title = fish or dc.creator = sanderson

d. dc.title = fish or (dc.creator = sanderson and dc.identifier = "id:1234567")

3.1.8 Boolean Modifiers
Booleans may be modified by one or more boolean modifiers, separated as per relation modifiers with '/'
characters. Again, boolean modifiers consist of a base name and may include a prefix determining the
modifier's context set [example a]. If not supplied, then the context set is 'cql'. As per relation modifiers,
they may also have a comparison symbol and a value [example b].
Examples:

a. dc.title = fish or/rel.combine=sum dc.creator any sanderson

[We need an explanation here of what relevance means when applied to a
boolean (as opposed to a relation). We never have understood this. If we
can=t describe it then delete this example.]

b. dc.title = monkey prox/unit=word/distance>1 dc.title = house
Find records where both Amonkey@ and Ahouse@ are in the title, separated by at least one
intervening word.

http://srw.cheshire3.org/contextSets/rel/

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 12 of 65

158

159

160
161
162
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180

181
182

183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198
199

3.1.9 Proximity Modifiers
Basic proximity modifiers are defined in the CQL context set .[reference]. Proximity units 'word',
'sentence', 'paragraph', and 'element' are defined there and may also be defined in other context sets.
Within the CQL set they are explicitly undefined. When defined in another context set they may be
assigned specific meaning.

Thus compare "prox/unit=word" with "prox/xyz.unit=word". In the first, 'unit' is a prox modifier from the
CQL set, and as such its values are undefined, so 'word' is subject to interpretation by the server. In the
second, 'unit' is a prox modifier defined by the xyz context set, which may assign the unit 'word' a specific
meaning.

The context set xyz may define additional units, for example, 'street':

 prox/xyz.unit="street"

This approach, 'prox/xyz.unit="street"', is chosen rather than 'Prox/unit=xyz.street' for the following
reason. In the first case, 'unit' is a modifier defined in the xyz context set, and 'street' is a value defined for
that modifier. In the second, 'unit' is a modifier from the cql context set, with a value defined in a different
set. so its value would have to be one that is defined in the cql context set. This approach is chosen to
avoid pairing a modifier from one set with a value from another, which can lead to unpredictable results.

3.1.10 Sorting
Queries may include explicit information on how to sort the result set generated by the search. (See result
set model [reference].)

The sort specification is included at the end, and is separated by a 'sortBy' keyword. The specification
consists of an ordered list of indexes, potentially with modifiers, to use as keys on which to sort the result
set. If multiple keys are given, then the second and subsequent keys should be used to determine the
order of items that would otherwise sort together. Each index used as a sort key has the same semantics
as when it is used to search.

Modifiers may be attached to the index in the same way as to booleans and relations in the main part of
the query. These modifiers may be part of any context set, including the CQL context set and the Sort
context set [reference]. This is the only time when a modifier may be attached to an index. If a modifier
may be used in this way it should be stated in the description of its semantics. As many types of search
also require specification of term order (for example the <, > and within relations), these modifiers are
often specified as relation modifiers.

Examples:

a. "cat" sortBy dc.title
b. "dinosaur" sortBy dc.date/sort.descending dc.title/sort.ascending

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 13 of 65

200

201
202
203
204
205
206
207
208

209
210
211

212
213

214

215
216
217
218

219

220
221

3.1.11 Prefix Assignment
 Note: The use of Prefix Maps is expected to be uncommon.
 A Prefix Map may be used to assign context set names to specific identifiers in order to be sure that the
server maps them in a desired fashion. It may occur at any place in the query and applies to anything
below the map in the query tree. A prefix assignment is specified by: '>' shortname '=' identifier [example
a]. The shortname and '=' sign may be omitted, in which case it sets a default context set for indexes
[example b].

Examples:

a. > dc = "info:units/direct-current" dc.voltage > 12
This example illustrates that while Adc@ is almost always used as the prefix for the Dublin Core
context set, this is not always so, as in this case it is used for the AdeepCustard@ context set.

b. > "info:units/direct-current" voltage > 12
This query has the same meaning as example a.

3.1.12 Case Sensitivity
All parts of CQL are case insensitive apart from user supplied search terms, values for modifiers and
prefix map identifiers, which may or may not be case sensitive. If any case insensitive part of CQL is
specified with mixed upper and lower case, it is for aesthetic purposes only.

3.2 BNF
Following is the Backus Naur Form (BNF) definition for CQL. ("::=" represents "is defined as".)

sortedQuery ::= prefixAssignment sortedQuery
| scopedClause ['sortby' sortSpec]

sortSpec ::= sortSpec singleSpec | singleSpec

singleSpec ::= index [modifierList]

cqlQuery ::= prefixAssignment cqlQuery
| scopedClause

prefixAssignment ::= '>' prefix '=' uri
| '>' uri

scopedClause ::= scopedClause booleanGroup searchClause
| searchClause

booleanGroup ::= boolean [modifierList]

boolean ::= 'and' | 'or' | 'not' | 'prox'

searchClause ::= '(' cqlQuery ')'
 | index relation searchTerm

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 14 of 65

222

223
224
225
226

 | searchTerm

relation ::= comparitor [modifierList]

comparitor ::= comparitorSymbol | namedComparitor

comparitorSymbol ::= '=' | '>' | '<' | '>=' | '<=' | '<>' | '=='

namedComparitor ::= identifier

modifierList ::= modifierList modifier | modifier

modifier ::= '/' modifierName [comparitorSymbol modifierValue]

prefix, uri, modifierName,
modifierValue, searchTerm,

index

::= term

term ::= identifier | 'and' | 'or' | 'not' | 'prox' | 'sortby'

identifier ::= charString1 | charString2

charString1 := Any sequence of characters that does not include any of the
following:

whitespace
 ((open parenthesis)
) (close parenthesis)
 =
 <
 >
 '"' (double quote)
 /

 If the final sequence is a reserved word, that token is returned
instead. Note that '.' (period) may be included, and a sequence of
digits is also permitted. Reserved words are 'and', 'or', 'not', and
'prox' (case insensitive). When a reserved word is used in a search
term, case is preserved.

charString2 := Double quotes enclosing a sequence of any characters except double
quote (unless preceded by backslash (\)). Backslash escapes the
character following it. The resultant value includes all backslash
characters except those releasing a double quote (this allows other
systems to interpret the backslash character). The surrounding
double quotes are not included.

3.3 Context Sets

CQL is so-named ("Contextual Query Language") because it is founded on the concept of searching by
semantics or context, rather than by syntax. The same search may be performed in a different way on
very different underlying data structures in different servers, but the important thing is that both servers

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 15 of 65

227
228

229
230
231
232
233
234

235
236
237
238

239
240
241
242

243
244

245
246
247
248

understand the intent behind the query. In order for multiple communities to define their own semantics,
CQL uses context sets in order to ensure cross-domain interoperability.

Context sets permit CQL users to create their own indexes, relations, relation modifiers and boolean
modifiers without risk of choosing the same name as someone else and thereby having an ambiguous
query. All of these four aspects of CQL must come from a context set, however there are rules for
determining the prevailing default if one is not supplied. Context sets allow CQL to be used by
communities in ways that the designers could not have foreseen, while still maintaining the same rules for
parsing which allow interoperability.

When defining a new context set, it is necessary to provide a description of the semantics of each item
within it. While context sets may contain indexes, relations, relation modifiers and boolean modifiers,
there is no requirement that all should be present; in fact it is expected that most context sets will only
define indexes.

Each context set has a unique identifier, a URI. When sending the context set in a query, a short form is
used. These short names may be sent as a mapping within the query itself, or be published by the
recipient of the query in some protocol dependent fashion. The prefix 'cql' is reserved for the base CQL
context set, but authors may wish to recommend a short name for use with their set.

An index, relation, or modifier qualified by a context is represented in the form prefix.value, where prefix is
a short name for a unique context set identifier.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 16 of 65

4 The searchRetrieve operation 249

The searchRetrieve operation is the main operation. It allows the client to submit a search and retrieve for
matching records from the server.

250
251
252

253

4.1 Request Parameters

Name Occurence Description

operation

mandatory The string: 'searchRetrieve'.

responseFormat optional The schema in which the response is to be supplied. If this
parameter is omitted, the SR2.0 schema is assumed (as
described in 4.1.2.) Other possible values are ‘atom1.0’,
‘rss2.0’, and ‘html’.

version mandatory The version of the request, and a statement by the client that it
wants the response to be less than, or preferably equal to, that
version. See .

query mandatory Contains a query expressed in CQL to be processed by the
server. See CQL .

startRecord optional The position within the sequence of matched records of the
first record to be returned. The first position in the sequence is
1. The value supplied MUST be greater than 0. The default
value if not supplied (and if records are present in the
response) is 1.

maximumRecords optional The number of records requested to be returned.. Default
value if not supplied is determined by the server. The server
MAY return less than this number of records, for example if
there are fewer matching records than requested, but MUST
NOT return more than this number of records.

recordPacking optional A string to determine how the record should be escaped in the
response. Defined values are 'string' and 'xml'. The default is
'xml'. See .

recordSchema optional The schema in which the records MUST be returned. The
value is the URI identifier for the schema or the short name for
it published by the server. The default value if not supplied is
determined by the server. See Record Schemas .

resultSetTTL optional The number of seconds for which the client requests that the
result set created should be maintained. The server MAY
choose not to fulfill this request, and may respond with a
different number of seconds. If not supplied then the server will
determine the value. See .

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 17 of 65

stylesheet optional A URL for a stylesheet. The client requests that the server
simply return this URL in the response. See .

extraRequestData optional Provides additional information for the server to process. See
.

Example:
 http://z3950.loc.gov:7090/voyager?version=1.1&operation=searchRetrieve
&query=dinosaur&maximumRecords=1&recordSchema=dc
This example is a request to search for the term "dinosaur", requesting that at most one record be
returned, according to the 'dc' schema

254
255
256
257
258
259

260

261
262
263

4.2 Response Parameters
 The response to a searchRetrieve request is an XML document. The table below provides a summary
and description of the elements provided by the XML document. The "Type" column indicates either an
XML Schema type ("xsd:") or a type defined within the schema.

Name Type Occurrence Description
version xsd:string Mandatory The version of the response. This MUST

be less than or equal to the version
requested by the client. See .

numberOfRecords xsd:integer Mandatory The number of records matched by the
query. If the query fails this MUST be 0.

resultSetId xsd:string Optional The identifier for a result set that was
created through the execution of the
query. See .

resultSetIdleTime xsd:integer Optional The number of seconds after which the
created result set will be deleted. The
result set may also become unavailable
before this. See .

records sequence of <record> Optional A sequence of records (or surrogate
diagnostics) matched by the query,. See
.

nextRecordPosition xsd:integer Optional The next position within the result set
following the final returned record. If there
are no remaining records, this field MUST
be omitted

diagnostics sequence of
<diagnostic>

Optional A sequence of non surrogate diagnostics
generated during execution. See
Diagnostics .

extraResponseData <xmlFragment> Optional Additional information returned by the
server. See .

echoedSearch <echoedSearch Optional The request parameters echoed back to

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 18 of 65

 RetrieveRequest RetrieveRequest> the client in a simple XML form. See .

4.3 Version: the “version” Parameter 264

265
266
267
268
269

270
271

272

273
274
275
276
277
278
279
280
281
282
283
284
285

286

287

288
289
290
291

292
293
294
295

296

297

In any actively developed protocol or piece of software, there is a concern about interoperability between
different versions. This protocol defines an explicit interoperability mechanism, with precisely defined
semantics. The mechanism defined allows for clients and servers using different versions to interact
without protocol level errors. Versions will always be recorded as strings of the format 'major.minor' where
major and minor are independent integers.

All operations have a version parameter, with the exception of the parameterless form of the explain
request. [See Explain operation]. For example:

http://z3950.loc.gov:7090/voyager?version=1.2&operation=searchRetrieve&query=dinosaur

The version parameter on a request both indicates the version of the request and is a statement by the
client that it wants the response to be less than, or preferably equal to, that version. The version
parameter in the response message is the version of the response. If the server cannot supply a
response in that version or lower, then it must return a diagnostic. If possible this diagnostic would be in
the version requested or lower, but that is not a requirement. Here are some examples of how this works
in practice. If a 2.0 client asks a 1.1 server for a 2.0 response, then the server is able to respond with a
1.1 response as it is lower than version 2.0. If a 1.1 client asks a 2.0 server for a 1.1 response then the
server is able to reduce its response version to accommodate the client. If a 1.1 client asks a 1.1 server
for a 1.1 response, then there is no version mismatch and the server is able to accommodate the request.
Version 1.0 was an experiment, and has been officially deprecated. Version 1.0 does not have a version
parameter in any of the requests or responses and hence cannot be considered to be part of this version
interoperability system. If a client requests version 1.0, then the server may return a 1.0 response but is
under no obligation to do so.

4.4 Records
All records are transferred in XML. (Records are not assumed to be stored in XML. Records which are not
natively XML must be first transformed into XML before being transferred.) Records may be expressed as
a single string, or as embedded XML. If a record is transferred as embedded XML, it must be well-formed
and should be validatable against the record schema.

The records parameter in the response is a sequence of record elements, each of which contains either a
record or a surrogate diagnostic explaining why that particular record could not be transferred. If the
requested record schema is unknown or the record cannot be rendered in that schema, then the server
MUST return a diagnostic.

4.4.1 Record Parameters
Each record element is structured into the following elements:

Name Type Occurence Description

recordSchema xsd:string mandatory The URI identifier of the XML schema
in which the record is encoded.
Although the request may use the
server's assigned short name, the
response must always be the full

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 19 of 65

URI.See Record Schemas

recordPacking xsd:string mandatory The packing used in recordData, as
requested by the client or the default.
See below.

recordData <stringOrXmlFragment> mandatory The record itself, either as a string or
embedded XML

recordIdentifier xsd:string optional

An identifier for the record by which it
can unambiguously be retrieved in a
subsequent operation. For example
via the 'rec.identifier' index in CQL.

recordPosition xsd:positiveInteger optional The position of the record within the
result set. See

extraRecordData <xmlFragment> optional Any additional information to be
transferred with the record. See .

 298

299

300
301
302
303
304
305
306
307
308
309
310
311
312

313

314
315
316
317
318
319

320
321
322
323

An example record, in the simple Dublin Core schema, packed as XML:

 <record>
 <recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
 <recordPacking>xml</recordPacking>
 <recordData>
 <srw_dc:dc xmlns:srw_dc="info:srw/schema/1/dc-v1.1">
 <dc:title>This is a Sample Record</dc:title>
 </srw_dc:dc>
 </recordData>
 <recordPosition>1</recordPosition>
 <extraRecordData>
 <rel:score xmlns:rel="info:srw/extensions/2/rel-1.0"> 0.965 </rel:score>
 </extraRecordData>
 </record>

4.4.2 Record Packing
In order that records which are not well formed do not break the entire message, it is possible to request
that they be transferred as a single string with the <, > and & characters escaped to their entity forms.
Moreover some toolkits may not be able to distinguish record XML from the XML which forms the
response. However, some clients may prefer that the records be transferred as XML in order to
manipulate them directly with a stylesheet which renders the records and potentially also the user
interface.

This distinction is made via the recordPacking parameter in the request. If the value of the parameter is
'string', then the server should escape the record before transferring it. If the value is 'xml', then it should
embed the XML directly into the response. Either way, the data is transferred within the 'recordData' field.
If the server cannot comply with this packing request, then it must return a diagnostic .

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 20 of 65

324

325

326
327
328

329
330
331
332
333

334
335

336

337
338
339
340
341

342
343
344
345
346

347
348
349
350
351

352
353
354
355
356

357

358
359
360
361
362
363
364
365

4.5 Result Sets
Support of persistent result sets is not assumed. Thus it is not assumed that a result set created by one
request may necessarily be accessed by a client in a subsequent request. The server is expected to state
whether or not it supports persistent result sets, and if so the result set model described is required.

There are applications in which result sets are critical; on the other hand there are applications in which
result sets are not viable. An example of the first might be scientific investigation of a database with
comparison of data sets produced at different times. An example of the latter might be a very frequently
used database of web pages in which persistent result sets would be an impossible burden on the
infrastructure due to the frequency of use.

Even if the server does not make result sets available for public manipulation, the following model is also
important to understand in order to allow a single request to both match records and then sort them.

4.5.1 Result Set Model
Processing of a query results in the selection of a set of records, represented by a result set maintained
at the server; logically it is an ordered list of references to the records. Once created, a result set cannot
be modified. Any operation that would somehow change a result set instead creates a new result set.
Each result set is referenced via a unique identifying string, generated by the server when the result set is
created.

From the client's point of view, the result set is a set of records each referenced by an ordinal number,
beginning at 1. The client may request a given record from a result set according to a specific schema.
For example the client may request record 1 in Dublin Core, and subsequently request record 1 in MODS.
The requested schema is not a property of the result set (nor of the requested records as a member of
the result set); the result set is simply the ordered list of records.

A record might be deleted or otherwise become unavailable while a result set which references that
record still exists. If a client then requests that record, the server is expected to supply a surrogate
diagnostic in place of the record. For example, if the record at position 2 in a result set is deleted and then
a client requests records 1 through 3, the server should supply, in order: record 1, a surrogate diagnostic
for record 2, record 3.

The records in a result set are not necessarily ordered according to any specific or predictable scheme,
unless it has been created with a request that contains a sort specification as part of the query. See for
more information regarding the specifics of sorting. If search and sort specifications are supplied on the
same request then only the final sorted result set is considered to exist, even if the server internally
creates a result set and then sorts it.

4.5.2 resultSetId
If the server supports result sets, it may include a resultSetId in the searchRetrieve response, along with
an idle time described below. If another query is submitted then the server will again supply a result set
id. If the result of the query would modify an existing result set (for example, a request to sort an existing
result set), then the server must supply a new id for this new set. The server should maintain unique
names for each result set created, even if the result sets no longer exist, such that clients do not
mistakenly request records from the new set when meaning to refer to the previous set with the same
identifier.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 21 of 65

366

367
368
369
370
371
372

373

374
375
376

377

378
379

380
381
382
383
384
385

386
387
388
389
390
391

392
393
394

395
396
397

398

399

400

401

402
403

404
405
406
407
408

4.5.3 ResultSet Idle Time
The server may supply an idle time along with a result set. The server is making a good-faith estimate
that the result set will remain available and unchanged (both in content and order) until a timeout (a
period of inactivity exceeding the idle time). The idle time is an integer representing seconds; it must be a
positive integer, and should not be so small that a client cannot realistically reference the result set again.
If the server does not intend that the result set be referenced, it should omit the result set identifier in the
response.

4.6 Diagnostics
Sometimes things go wrong. In these cases the server is obliged to report that something went wrong, by
sending a diagnostic record explaining what happened. A list of diagnostics is supplied in Annex XXX
and additional diagnostics may be added.

4.6.1 Diagnostic Categories: Fatal vs. Non-fatal, and Surrogate Vs. Non-
Surrogate

 Diagnostics fall into two categories, 'fatal' and 'non-fatal'. A fatal diagnostic is one in which the execution
of the request cannot proceed and no records are available to return. For example, if the client supplied
an invalid query there is nothing that the server can do. A non-fatal diagnostic on the other hand is one
where processing may be affected but the server can continue. For example if a particular record is not
available in the requested schema but others are, the server may return the ones that are available rather
than failing the entire request.

Non-fatal diagnostics are also divided into two categories 'surrogate' and 'non-surrogate'. Surrogate
diagnostics take the place of a record. For example if the second of three records was not available in the
requested schema, then the response would include the first record, a surrogate diagnostic explaining
that the second record is not available, and then the final record. Non-surrogate, non-fatal diagnostics are
diagnostics saying that while some or all the records are available, something else went wrong. For
example the requested sorting algorithm might not be available.

Surrogate diagnostics occur in the 'records' parameter of the response (they take the place of the record
for which they are a surrogate). Non-surrogate records, both fatal and non-fatal, occur in the 'diagnostics'
parameter.

To summarize: A surrogate diagnostic replaces a record; a non-surrogate diagnostic refers to the
response at large and is supplied in addition to the records. A non-surrogate diagnostic may be fatal or
non-fatal. So the following combinations are possible:

1. fatal (implicitly non-surrogate)

2. surrogate (implicitly non-fatal)

3. non-fatal, non-surrogate

4.6.2 Diagnostic Schema
Diagnostics are returned in a very simple schema which has only three elements, 'uri', 'details' and
'message'.

The required 'uri' field is a URI, identifying the particular diagnostic. When the URI begins with
"info:srw/diagnostic/1/" (for example, 'info:srw/diagnostic/1/7') then the diagnostic is from the diagnostic
list below. The 'details' part contains information specific to the diagnostic, format as specified by the
individual diagnostic definition. The 'message' field contains a human readable message to be displayed.
Only the uri field is required, the other two are optional.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 22 of 65

409
410

411

412

413

It is recommended for all diagnostics that the final section should be a distinguishing integer (for example
'http://srw.cheshire3.org/diagnostics/1')

The identifier for the diagnostic schema is: info:srw/schema/1/diagnostics-v1.1

Name Type Occurence Description

uri xsd:anyURI Mandatory The diagnostic's identifying
URI.

details xsd:string Optional Any supplementary
information available, often in
a format specified by the
diagnostic

message xsd:string Optional A human readable message
to display to the end user.
The language and style of
this message is determined
by the server, and clients
should not rely on this text
being appropriate for all
situations.

 414

415

416

417
418
419
420
421
422
423
424

425

426
427
428
429
430
431
432

Examples
Non-surrogate, fatal diagnostic:

<diagnostics>
 <diagnostic xmlns="http://www.loc.gov/zing/srw/diagnostic/">
 <uri>info:srw/diagnostic/1/38</uri>
 <details>10</details>
 <message>Too many boolean operators, the maximum is 10.
 Please try a less complex query.</message>
 </diagnostic>
 </diagnostics>

Surrogate, non-fatal diagnostic:

<records>
 <record>
 <recordSchema> info:srw/schema/1/diagnostics-v1.1</recordSchema>
 <recordData>
 <diagnostic xmlns="http://www.loc.gov/zing/srw/diagnostic/">
 <uri>info:srw/diagnostic/1/65</uri>
 <message>Record deleted by another user.</message>

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 23 of 65

433
434
435

436

437
438

439
440
441
442
443
444
445

446
447
448
449
450

451

452
453

 </diagnostic>
 </recordData> </record> ...
 </records>

4.7 Extensions: the “extraRequestData’, ‘extraResponseData’, and
xtraRecordData’ Parameters

 Messages in all of the operations, both in the request and in the response, have a field in which
additional information may be provided. This is a built in extension mechanism where profiles may specify
a schema for what to include in this section without requiring the developers to change the basic
messages and thus render their implementation uninteroperable with other servers and clients. It is
expected that if there is sufficient demand for a particular piece of additional information, that piece of
information will be migrated into the protocol in a later version. In this way, only implemented and useful
features will be added in future versions, rather than features that just seem like a good idea.

Via GET or POST, the name for an extension parameter must begin with 'x-': lower case x followed by
hyphen. The protocol will never include an official parameter with a name beginning with 'x-', and hence
this will never clash with a mainstream parameter name. It is recommended that the parameter name be
'x-' followed by an identifier for the namespace for the extension, again followed by a hyphen, followed by
the name of the element within the namespace. For example

http://z3950.loc.gov:7090/voyager?...&x-info4-onSearchFail=scan

 Note that this convention does not guarantee uniqueness since the parameter name will not include a full
URI. The extension owner should try to make the name as unique as possible. If the namespace is
identified by an 'info:srw' URI , then the recommended convention is to name the parameter "x-infoNNN-
XXX" where NNN is the 'info:srw' authority string, and XXX is the name of the parameter. Extension
names MUST never be assigned with this form except by the proper authority for the given 'info'
namespace. Response Every response has an extraResponseData section. This section can include any
well-formed XML, and hence servers can include namespaced XML fragments within it in order to convey
information back to the client. The extension MUST supply a namespace and the element names with
which to do this, if feedback to the client is necessary. For example:

454
455
456
457
458
459
460

461
462
463
464
465

466
467
468
469
470
471
472
473
474
475
476
477

<sru:extraResponseData>
 <auth:token xmlns:auth="info:srw/extension/2/auth-1.0">
 277c6d19-3e5d-4f2d-9659-86a77fb2b7c8
 </auth:token>
 </sru:extraResponseData>

Semantics: If the server does not understand a piece of information in an extension parameter, it may
silently ignore it. This is unlike many other request parameters, where if the server does not implement
that particular feature it MUST respond with a diagnostic. If the particular request requires some
confirmation that it has been carried out rather than ignored, then the profile designer should include a
field in the response. The semantics of parameters in the request may not be modified by extensions. For
example, a x-qt-queryType parameter could not change query to be an SQL query, as a server that does
not understand the extension would expect the query to be in CQL, and thus be unable to parse it.
Instead, the extension should create a new parameter for the SQL query. The semantics of parts of the
response may be modified by extensions. The response semantics may be changed in this way only if the
client specifically requests the change. Clients should also expect to receive the regular semantics, as
servers are at liberty to ignore extensions, and hence it is recommended that this not be done.
ExtraResponseData may be sent that is not directly associated with the request. For example it may

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 24 of 65

478
479
480
481
482
483
484
485
486
487

488

489
490
491
492
493
494

495

496
497

498

499
500

501

502
503
504

505

506
507
508
509
510
511
512
513
514
515
516
517
518

contain cost information regarding the query or information on the server or database supplying the
results. This data must, however, have been requested. As the request may be echoed, the server must
be able to transform the parameters into their XML form. If it encounters an unrecognized parameter, the
server may either make its best guess as to how to transform the parameter, or simply not return it at all.
It should not, however, add an undefined namespace to the element as this would invalidate the
response. If the content of the parameter is an XML structure, then the extension designer should also
specify how to encode this structure in a URL. This may simply be to escape all of the special characters,
but the designer could also create a string encoding form with rules as to how to generate the XML in
much the same fashion as the relationship between CQL and XCQL.
echoedSearch

4.8 Echoing the Request: The “echoedSearchRetrieveRequest” Parameter
 Very thin clients, such as a web browser with a stylesheet as above, may not have the facility to record
the query that generated the response it has just received. In order to prevent clients having to maintain
this information, the server may echo the request back to the client along with the response. There are no
request elements associated with this functionality. There is one response element per operation in which
the request is echoed. The name of this is the name of the response element, prefixed by echoed. The
parameters are rendered into XML.

4.8.1 xQuery
xQuery is an additional parameter for searchRetrieve and scan, which has the query rendered in XCQL [reference].
This has two benefits:

a. The client can use XSLT or other XML manipulation to modify the query without having a CQL query parser.

b. The server can return extra information specific to the clauses within the query. See the next
section on extensions for more information.

4.8.2 baseUrl
A server can include is own base URL in the echoed request. This allows the client to easily reconstruct
queries by simple concatenation, or retrieve the explain document to fetch additional information such as
the title and description to include in the results presented to the user.

Example:

<echoedSearchRetrieveRequest>
 <version>1.2</version>
 <query>dc.title = dinosaur</query>
 <recordSchema>mods</recordSchema>
 <xQuery>
 <searchClause xmlns="http://www.loc.gov/zing/cql/xcql/">
 <index>dc.title</index>
 <relation>
 <value>=</value>
 </relation>
 <term>dinosaur</term>
 </searchClause>
 </xQuery>

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 25 of 65

519
520

521

522

523
524
525
526
527
528
529
530

 <baseUrl>http://z3950.loc.gov:7090/voyager</baseUrl>
</echoedSearchRetrieveRequest>

4.9 Stylesheets: the ‘stylesheet’ Parameter
In order to render the response, "thin" clients may provide a stylesheet to turn the response XML into a
natively renderable format, often HTML or XHTML. This allows a web browser, or other application
capable of rendering stylesheets, to act as a dedicated client without requiring any further application
logic. The parameter on the response enables a client to use this stylesheet to also have the request it
just made available without any client side logic. OperationsAll operations, other than the parameterless
explain request, have the stylesheet parameter. The value of the parameter is the URL of the stylesheet
to be included in the response. This URL is to be included in the href attribute of the xml-stylesheet
processing instruction before the response xml. It is likely that the type will be XSL, but not necessarily. If
the server cannot fulfill this request it must supply a diagnostic . This parameter may not be used via
SOAP. It is a SOAP error to return a stylesheet, and hence an error to request one. If this parameter is
not supplied, then the server can, at its discretion, include a default stylesheet. The default stylesheet
URL may be included in the explain document. For example, upon receiving the request ...

531
532
533
534

535
536
537

538

539
540
541

542

http://z3950.loc.gov:7090/voyager?version=1.2&operation=searchRetrieve
 &stylesheet=/master.xsl&query=dinosaur

...the server must include the following as beginning of the response:

<?xml version="1.0"?>
 <?xml-stylesheet type="text/xsl" href="/master.xsl"?>
 <sru:searchRetrieveResponse ...

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 26 of 65

5 Scan Operation 543

While the searchRetrieve operation enables searches for a specific terms within the records, the scan
operation allows the client to request a range of the available terms at a given point within a list of
indexed terms. This enables clients to present an ordered list of values and, if supported, how many hits
there would be for a search on that term. Scan is often used to select terms for subsequent searching or
to verify a negative search result.

544
545
546
547
548

549
550
551
552
553
554

555
556
557

558

The index to be browsed and the start point within it is given in the scanClause parameter as a complete
index, relation, term clause in CQL. The relation and relation modifiers may be used to determine the
format of the terms returned. For example 'dc.title any fish' will return a list of keywords, whereas 'dc.title
exact fish' would return a list of full title fields. Range relations, such as <, >=, within and so forth, are
prohibited for use with scan, and diagnostic 'info:srw/diagnostic/1/19' should be returned. See below for a
clarifying example.

The term given in the clause is the position within the ordered list of terms at which to start, however see
the responsePosition parameter below for more information. If the empty term is given, then even if
searching for it is unsupported by the server, it may be interpreted as the beginning of the term list.

5.1 Request Parameters
Name Occurence Description
operation mandatory The string: 'scan'.

version mandatory The version of the request, and a statement by the client
that it wants the response to be less than, or preferably
equal to, that version. See .

scanClause mandatory The index to be browsed and the start point within it,
expressed as a complete index, relation, term clause in
CQL. See CQL .

responsePosition optional The position within the list of terms returned where the
client would like the start term to occur. If the position given
is 0, then the term should be immediately before the first
term in the response. If the position given is 1, then the
term should be first in the list, and so forth up to the
number of terms requested plus 1, meaning that the term
should be immediately after the last term in the response,
even if the number of terms returned is less than the
number requested. The range of values is 0 to the number
of terms requested plus 1. The default value is 1.

maximumTerms optional The number of terms which the client requests be returned.
The actual number returned may be less than this, for
example if the end of the term list is reached, but may not
be more. The explain record for the database may indicate
the maximum number of terms which the server will return
at once. All positive integers are valid for this parameter. If
not specified, the default is server determined.

stylesheet optional A URL for a stylesheet. The client requests that the server

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 27 of 65

simply return this URL in the response. See .

extraRequestData optional Provides additional information for the server to process.
See .

Example: 559

560
561

562

563

http://myserver.com/sru?operation=scan&version=1.2&scanClause=dc.title = frog
&responsePosition=1&maximumTerms=25

5.2 Response Parameters

Name Type Occurence Description
version xsd:string mandatory The version of the response. This

MUST be less than or equal to
the version requested by the
client. See .

terms sequence of <term> optional A sequence of terms which
match the request. See

diagnostics sequence of <diagnostic> Optional A sequence of non surrogate
diagnostics generated during
execution. See Diagnostics .

extraResponseData xmlFragment Optional Additional information returned by
the server. See .

echoedScanRequest <echoedScanRequest> Optional The request parameters echoed
back to the client in a simple XML
form. See .

 564

565 5.3 Terms
Name Type Occurence Description

value xsd:string mandatory The term, exactly as it appears in the
index.

numberOfRecords xsd:nonNegativeInteger optional The number of records which would
be matched if the index in the
request's scanClause was searched
with the term in the 'value' field.

displayTerm xsd:string optional A string to display to the end user in
place of the term itself. For example
this might add back in diacritics or
capitalisation which do not appear in
the index.

whereInList xsd:string optional A flag to indicate the position of the
term within the complete term list. It
must be one of the following values:

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 28 of 65

'first' (the first term), 'last' (the last
term), 'only' (the only term) or 'inner'
(any other term)

extraTermData xmlFragment optional Additional information concerning the
term. See .

 566

567

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

5.4 Example Scan Response
<sru:scanResponse xmlns:srw="http://www.loc.gov/zing/srw/"
 xmlns:diag="http://www.loc.gov/zing/srw/diagnostic/"
 xmlns:myServer="http://myServer.com/">
 <sru:version>1.1</sru:version>
 <sru:terms>

 <sru:term>
 <sru:value>cartesian</sru:value>
 <sru:numberOfRecords>35645</sru:numberOfRecords>
 <sru:displayTerm>Carthesian</sru:displayTerm>
 </sru:term>

 <sru:term>
 <sru:value>carthesian</sru:value>
 <sru:numberOfRecords>2154</sru:numberOfRecords>
 <sru:displayTerm>CarthÉsian</sru:displayTerm>
 </sru:term>

 <sru:term>
 <sru:value>cat</sru:value>
 <sru:numberOfRecords>8739972</sru:numberOfRecords>
 <sru:displayTerm>Cat</sru:displayTerm>
 </sru:term>

 <sru:term>
 <sru:value>catholic</sru:value>
 <sru:numberOfRecords>35</sru:numberOfRecords>
 <sru:displayTerm>Catholic</sru:displayTerm>
 <sru:whereInList>last</sru:whereInList>
 <sru:extraTermData>
 <myserver:ID>4456888</myserver:ID>
 </sru:extraTermData>
 </sru:term>

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 29 of 65

601
602
603
604
605
606
607
608
609
610
611

612
613

 </sru:terms>

 <sru:echoedScanRequest>
 <sru:version>1.1</sru:version>
 <sru:scanClause>dc.title="cat"</sru:scanClause>
 <sru:responsePosition>3</sru:responsePosition>
 <sru:maximumTerms>3</sru:maximumTerms>
 <sru:stylesheet>http://myserver.com/myStyle</sru:stylesheet>
 </sru:echoedScanRequest>
</sru:scanResponse>

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 30 of 65

6 The Explain Facility 614

The Explain Facility allows a client to retrieve a description of the resources and services available at a
server. It can then be used by the client to self-configure and provide an appropriate interface to the user.
The record is in XML and follows the ZeeRex Schema. There are two methods for getting the explain
record:

615
616
617
618

619
620

621
622
623
624

625

626

a. Via the Explain Operation
See 6.1.

b. Via the http GET request at the base URL for the service
This can be considered a searchRetrieve request, no parameters, and hence a default
recordPacking of 'xml', with no extraRequestData and leaving it up to the server to determine the
version of the response. Otherwise, the response is identical to an explainResponse message.

6.1 Explain Operation

6.1.1 Request Parameters

Name occurence Description
operation Mandatory The string: 'explain'.

version Mandatory The version of the request, and a statement by the client that it
wants the response to be less than, or preferably equal to, that
version. See .

recordPacking Optional A string to determine how the explain record should be escaped in
the response. Defined values are 'string' and 'xml'. The default is
'xml'. See .

stylesheet Optional A URL for a stylesheet. The client requests that the server simply
return this URL in the response. See .

extraRequestData Optional Provides additional information for the server to process. See .

4.3.2 Response Parameters 627

Name Type occurence Description

version xsd:string Mandatory The version of the response. This MUST be
less than or equal to the version requested
by the client. See …

record record Mandatory A single Explain record, wrapped in the
record metadata fields. See .

extraResponseData xmlFragment Optional Additional information returned by the server.
>> See .

echoedExplainRequest <echoedExpla
inRequest>

Optional The request parameters echoed back to the
client in a simple XML form. >> See

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 31 of 65

7 XML and WSDL Files 628

XML and WSDL files for the above defined operations will be provided in the published version of this
standard.

629
630
631
632
633

This current discussion document is based on SRU. The XML and WSDL files for SRU version 1.1 can
be found at:
http://www.loc.gov:8081/standards/sru/sru1-1archive/xml-files.html

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 32 of 65

8 Transports 634

8.1 HTTP Get Binding 635

636
637
638

639
640

641

642
643

644

The client may send a request via the HTTP GET method. A URL is constructed and sent to the server
with fixed parameter names with fixed meanings. When unicode characters need to be encoded, there
are some additional constraints, discussed below.

The response must be XML conforming to the response schema of the operation. HTTP GET can thus be
described as the simplest case of XML over HTTP.

An example of what might pass over the wire:

GET /voyager?version=1.2&operation=searchRetrieve&query=dinosaur HTTP/1.1
 Host: z3950.loc.gov:7090

8.1.1 Syntax
A request (when transported via HTTP GET) is a URI as described in RFC 3986 (See). Specifically it is
an HTTP URL (as described in section 3.3 of

645
 RFC 1738) ; however there are some further notes about

character encoding below, and uses the standard & separated key=value encoding for parameters in the
query part of the URI.

646
647
648

649
650
651

652

653
654

The parameters for the query section of the URL (the information following the question mark) of the
various operations are described in their own sections.

8.1.2 Encoding Issues
The following encoding procedure is recommended, in particular, to accommodate Unicode characters
(characters from the Universal Character Set, ISO 10646) beyond U+007F, which are not valid in a URI.
This is normally relevant only to the query parameter of the searchRetrieve operation and the scanClause
parameter of the scan

655
operation 656

657

658

659

660
661
662
663
664

665

666

1. .Convert the value to UTF-8.

2. Percent-encode characters as necessary within the value. See

3. Construct the URI from the parameter names and encoded values.

Note: In step 2, it is recommended to percent-encode every character in a value that is not in the URI
unreserved set, that is, all except alphabetic characters, decimal digits, and the following four special
characters: dash(-), period (.), underscore (_), tilde (~). By this procedure some characters may be
percent-encoded that do not need to be -- For example '?' occurring in a value does not need to be
percent encoded, but it is safe to do so. If in doubt, percent-encode.

Example

Consider the following parameter:

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 33 of 65

667

668

669
670

671

672

673

674

675
676

677

678

679

680
681
682
683
684
685

686
687
688
689
690

691

692
693
694

695
696
697
698
699

700

query=dc.title =/word kirkegård

The name of the parameter is "query" and the value is "dc.title =/word kirkegård "

Note that the first '=' (following "query") must not be percent encoded as it is used as a URI delimiter; it is not part
of a parameter name or value. The second '=' (preceding the '/') must be percent encoded as it is part of a value.

The following characters must be percent encoded:

- the second '=', percent encoded as %3D

- the '/', percent encoded as %2F

- the spaces, percent encoded as %20

- the 'å'. Its UTF-8 representation is C3A5, two octets, and correspondingly it is represented in a
URI as two characters percent encoded as %C3%A5.

 The resulting parameter to be sent to the server would then be:

query=dc.title%20%3D%2Fword%20kirkeg%C3%A5rd

8.1.3 Server Procedure
1. Parse received request based on '?', '&', and '=' into component parts: the base URL, and

parameter names and values.
2. For each parameter.

i. Decode all %-escapes.
ii. Treat the result as a UTF-8 string

Note:

 RFC 1738 is obsoleted by RFC 3986. However, RFC 1738 describes the 'http:' URI scheme; RFC 3986
does not, instead indicating that a separate document will be written to do so, but it has not yet been
written. So currently there is no valid, normative reference for the 'http:' URI scheme, and so the obsolete
RFC 1738 is referenced. When there is a valid, normative reference, it will be listed here.

8.2 HTTP Post Binding
Instead of constructing a URL, the parameters may be sent via POST to the server. The Content-type
header MUST be set to 'application/x-www-form-urlencoded'. Compare to 'text/xml' - via SOAP below,
which can be used to distinguish the two transports at the same end point.

POST has several benefits over GET for transferring the request to the server. Primarily the issues with
character encoding in URLs are removed, and an explicit character set can be submitted in the Content-
type HTTP header. Secondly, very long queries might generate a URL for HTTP GET that is not
acceptable by some web servers or client. This length restriction can be avoided by using POST.

The response via POST is identical to that of GET, an xml document.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 34 of 65

701

702
703
704
705
706

707

708

An example of what might be passed over the wire in the request:

POST /voyager HTTP/1.1
 Host: z3850.loc.gov:7090
 Content-type: application/x-www-form-urlencoded; charset=iso-8859-1
 Content-length: 51
 version=1.1&operation=searchRetrieve&query=dinosaur

8.3 SOAP Binding
This is a binding to the SOAP recommendation of the W3C . In this transport, the request is encoded in
XML and wrapped in some additional SOAP specific elements. The response is the same XML as via
GET or POST, but wrapped in additional SOAP specific elements.

709
710
711

712
713

714

715
716

717

718

719
720

721
722
723

The incremental benefits of SOAP are the ease of structured extensions, web service facilities such as
proxying and request routing, and the potential for better authentication systems.

8.3.1 SOAP Requirements
• Clients and servers MUST support SOAP version 1.1, and MAY support version 1.2 or higher.

This requirement is allow as much flexibility in implementation as possible.

• The service style is 'document/literal'.

• Messages MUST be inline with no multirefs.

• The SOAPAction HTTP header may be present, but should not be required. If present its value
MUST be the empty string. It MUST be expressed as: SOAPAction:

• As specified by SOAP, for version 1.1 the Content-type header MUST be 'text/xml'. For version
1.2 the header value MUST be 'application/soap+xml'. End points supporting both versions of
SOAP as well as the POST binding thus have three content-type headers to consider.

The specification tries to adhere to the Web Services Interoperability recommentations. 724

725

726

727
728

729
730

731

732
733

8.3.2 SOAP Parameter Differences
There are some differences regarding the parameters that can be transported via the SOAP binding.

The 'operation' request parameter MUST NOT be sent. The operation is determined by the XML
constructions employed.

The 'stylesheet' request parameter MUST NOT be sent. SOAP prevents the use of stylesheets to render
the response.

Example SOAP request:

<SOAP:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP:Body>

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 35 of 65

734
735
736
737
738
739
740
741
742

743

744

745
746
747
748

749
750
751
752
753
754

 <SRW:searchRetrieveRequest xmlns:SRW="http://www.loc.gov/zing/srw/">
 <SRW:version>1.1</SRW:version>
 <SRW:query>dinosaur</SRW:query>
 <SRW:startRecord>1</SRW:startRecord>
 <SRW:maximumRecords>1</SRW:maximumRecords>
 <SRW:recordSchema>info:srw/schema/1/mods-v3.0</SRW:recordsSchema>
 </SRW:searchRetrieveRequest>
 </SOAP:Body>
</SOAP:Envelope>

8.3.3 Extension Parameters via SOAP
Via SOAP, the extension parameters are XML structures. The request parameters are identified by their
full namespace, and the name of the parameter is the name of the XML element. Even if there is only one
piece of additional information supplied, it must be within a namespaced XML element. This is in order to
ensure that servers can distinguish a parameter from one extension from another. For example:

<extraRequestData>
 <theo:onSearchFail xmlns:theo="info:srw/extension/4/searchextensions">
 scan
 </theo:onSearchFail>
 </extraRequestData>

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 36 of 65

A. The CQL Context Set 755

Normative Annex 756

757

758

The CQL context set defines a set of indexes, relations and relation modifiers. The indexes supplied are
'utility' indexes which are generallyu useful across all applications of the language. These utility indexes
are for instances when CQL is required to express a concept not directly related to the records, or for
indexes applicable in practically every context. The reserved name for this context set is: cql

759
760
761

762
763

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

The identifier for this context set is: info:srw/cql-context-set/1/cql-v1.2

A.1 Indexes 764

• resultSetId
 A search clause may be a result set id. This is a special case, where the index and relation are
expressed as "cql.resultSetId =" and the term is the result set id returned by the server in the
'resultSetId' parameter of the searchRetrieve response. It may be used by itself in a query to refer
to an existing result set from which records are desired. It may also be used in conjunction with
other resultSetId clauses or other indexes, combined by boolean operators. The semantics of
resultSetId with relations other than "=" is undefined. The semantics of resultSetId with scan is
also undefined.

Example:
cql.resultSetId = "5940824f-a2ae-41d0-99af-9a20bc4047b1"
 Match the result set with the given identifier.

• allRecords
 A special index which matches every record available. Every record is matched no matter what
values are provided for the relation and term, but the recommended syntax is: cql.allRecords = 1.
The semantics for scanning allRecords is not defined.

Example:
cql.allRecords = 1 NOT dc.title = fish
 Search for all records that do not match 'fish' as a word in title.

• allIndexes
 Alias: anywhere
 The 'allIndexes' index will result in a search equivalent to searching all of the indexes (in all of the
context sets) that the server has access to. The semantics for scanning allIndexes is not defined.

Example:
cql.allIndexes = fish
If the server had three indexes title, creator and date, then this would be the same as title = fish
or creator = fish or date = fish

• anyIndexes
Alias: serverChoice
The 'anyIndexes' index allows the server to determine how to search for the given term. The

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 37 of 65

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

824
825

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

842
843
844
845

server may choose one or more indexes in which to search, which may or may not be generally
available via CQL. It may choose a different index to search every time, based on the term for
example, and hence may not produce consistent results via scan.

This is the default when the index and relation is omitted from a search clause. The relation used
when the index is omitted is '='.
Examples:
cql.anyIndexes = fish
Search in any one or more indexes for the term fish

• keywords
 The keywords index is an index of terms from the record, determined by the server as being
generally descriptive or meaningful to search on. It might include the full text of a document,
descriptive metadata fields, or anything else generally useful to search as an initial entry point to
the data. Exactly which fields make up this index is determined by the server, however the choice
must be consistent, unlike anyIndexes above, when the choice can be different for different
searches.

Example:
cql.keywords any/relevant "code computer calculator programming"
Search in descriptive locations for the given term

A.2 Relations 822

A.2.1 Implicit Relations 823

These relations are defined as such in the grammar of CQL. The cql context set only defines their
meaning, rather than their existence.

• =
This is the default relation, and the server can choose any appropriate relation or means of
comparing the query term with the terms from the data being searched. If the term is numeric, the
most commonly chosen relation is '=='. For a string term, either 'adj' or '==' as appropriate for the
index and term.

Examples:

o animal.numberOfLegs = 4
The recommended server choice for this example is '=='

o dc.identifer = "gb 141 staff a-m"
The recommended server choice for this example is '=='

o dc.title = "lord of the rings"
The recommended server choice for this example is 'adj'

o dc.date = "2004 2006"
The recommended server choice for this example is 'within'

• ==
 This relation is used for exact equality matching. The term in the data is exactly equal to the term
in the search.
Examples:

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 38 of 65

846
847
848
849
850
851
852

853
854
855
856
857
858
859
860
861

862
863
864
865
866
867
868
869
870

872

873
874
875
876
877
878
879
880
881
882

883
884
885
886
887
888
889
890

o dc.identifier == "gb 141 staff a-m"
 Search for the string 'gb 141 staff a-m' in the identifier index.

o dc.date == "2006-09-01 12:00:00"
 Search for the given datestamp.

o animal.numberOfLegs == 4
 Search for animals with exactly 4 legs.

• <>
 This relation means 'not equal to' and matches anything which is not exactly equal to the search
term.
Examples:

o dc.date <> 2004-01-01
Search for any date except the first of January, 2004

o dc.identifier <> ""
Search for any identifier which is not the empty string.

• <, >, <=,>=
These relations retain their regular meanings as pertaining to ordered terms (less than, greater
than, less than or equal to, greater than or equal to).
Examples:

o dc.date > 2006-09-01
Search for dates after the 1st of September, 2006

o animal.numberOfLegs < 4
Search for animals with less than 4 legs.

A.2.2 Defined Relations 871

 These relations are defined as being widely useful as part of a default context set.

• adj
This relation is used for phrase searches. All of the words in the search term must appear, and
must be adjacent to each other in the record in the order of the search term. The query could also
be expressed using the PROX boolean operator.
Examples:

o dc.title adj "day in the life"
Search for the phrase 'lord of the rings' somewhere in the title.

o dc.description adj "blue shirt"
Search for 'blue' immediately followed by 'shirt' in the description.

• all, any
 These relations may be used when the term contains multiple items to indicate "all of these
items" or "any of these items". These queries could be expressed using boolean AND and OR
respectively. These relations have an implicit relation modifier of 'cql.word', which may be
changed by use of alternative relation modifiers.
Examples:

o dc.title all "day life"
Search for both day and life in the title.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 39 of 65

891
892
893

894
895
896
897
898
899
900
901
902
903

904
905
906
907
908
909
910
911
912
913

916
917
918
919

920
921
922
923

924
925
926

927
928
929
930
931

932
933
934

o dc.description any "computer calculator"
Search for either computer or calculator in the description.

• within
Within may be used with a search term that has multiple dimensions. It matches if the database's
term falls completely within the range, area or volume described by the search term, inclusive of
the extents given.
Examples:

o dc.date within "2002 2003"
Search for dates between 2002 and 2003 inclusive.

o animal.numberOfLegs within "2 5"
Search for animals that have 2,3,4 or 5 legs.

• encloses
Conversely, encloses is used when the index's data has multiple dimensions. It matches if the
database's term fully encloses the search term.
Examples:

o xyz.dateRange encloses 2002
Search for ranges of dates that include the year 2002.

o geo.area encloses "45.3, 19.0"
Search for any area that encloses the point 45.3, 19.0
This example needs more work

A.3 Relation Modifiers 914

A.3.1 Functional Modifiers 915

• stem
The server should apply a stemming algorithm to the words within the term. For example such
that computing and computer both match the stem of 'compute'.

• relevant
The server should use a relevancy algorithm for determining matches and the order of the result
set.

• phonetic
 The server should use a phonetic algorithm for determining words which sound like the term.

• fuzzy
The server should be liberal in what it counts as a match. The exact details of this are left up to
the server, but might include permutations of character order, off-by-one for numerical terms and
so forth.

• partial
 When used with within or encloses, there may be some section which extends outside of the
term. This permits for the database term to be partially enclosed, or fall partially within the search

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 40 of 65

935
936

937
938
939
940
941

942
943
944
945
946
947

948
949
950
951
952
953
954

955
956
957
958

959
960
961
962

963
964

965
966
967

968

970
971

972
973
974

975
976
977

term.

• ignoreCase, respectCase
 The server is instructed to either ignore or respect the case of the search term, rather than its
default behavior (which is unspecified). This modifier may be used in sort keys to ensure that
terms with the same letters in different cases are sorted together or separately, respectively.

• ignoreAccents, respectAccents
 The server is instructed to either ignore or respect diacritics in terms, rather than its default
behavior (which is unspecified, but respectAccents is the recommended default). This modifier
may be used in sort keys, to ensure that characters with diacritics are sorted together or
separately from those without them.

• locale=value
The term should be treated as being from the specified locale. Locales will in general include
specifications for whether sort order is case-sensitive or insensitive, how it treats accents, and so
forth. The default locale is determined by the server. The value is usually of the form C, french,
fr_CH, fr_CH.iso88591 or similar. This modifier may be used in sort keys.

 Examples:

• dc.title any/stem "computing disestablishmentarianism"
Find the local stemmed form of 'computing' and 'disestablishmentarianism', and search for those
stems in the stemmed forms of the terms in titles.

• person.phoneNumber =/fuzzy "0151 795-4252"
Search for a phone number which is something similar to '0151 795-4252' but not necessarily
exactly that number.

• "fish" sortBy dc.title/ignoreCase
Search for 'fish', and then sort the results by title, case insenstively.

• dc.title within/locale=fr "l m"
Find all titles between l and m, ensure that the locale is 'fr' for determining the order for what is
between l and m.

A.3.2 Term-format Modifiers 969

These modifiers specify the format of the search term to ensure that the server performs the correct
comparison. These modifiers may all be used in sort keys.

• word
The term should be broken into words, according to the server's definition of a 'word'

• string
The term is a single item, and should not be broken up.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 41 of 65

978
979
980

981
982
983

984
985
986

987
988
989
990

991
992
993

994
995

996
997
998

999

1001
1002
1003
1004

1005
1006

1007
1008
1009

1010
1011
1012
1013
1014
1015
1016

1017
1018
1019
1020

• isoDate
Each item within the term conforms to the ISO 8601 specification for expressing dates.

• number
Each item within the term is a number.

• uri
Each item within the term is a URI.

• oid
Each item within the term is an ISO object identifier, dot-separated format.

 Examples:

• dc.title =/string Jaws
Search in title for the string 'Jaws', rather than Jaws as a word. (Equivalent to the use of == as the
relation)

• zeerex.set ==/oid "1.2.840.10003.3.1"
Search for the given OID as an attribute set.

• squirrel sortby numberOfLegs/number
Search for squirrel, and sort by the numberOfLegs index ensuring that it is treated as a number,
not a string. (eg '2' would sort after '10' as a string, but before it as a number)

A.3.3 Masking 1000

• masked
This is a default modifier, that is, it is assumed if omitted. To explicitly request this functionality,
add 'cql.masked' as a relation modifier. The following masking rules and special characters apply
for search terms, unless overridden in a profile via a relation modifier.

o *
A single asterisk (*) is used to mask zero or more characters.

o ?
A single question mark (?) is used to mask a single character, thus N consecutive
question-marks means mask N characters.

o ^
Carat/hat (^) is used as an anchor character for terms that are word lists, that is, where
the relation is 'all' or 'any', or 'adj'. It may not be used to anchor a string, that is, when the
relation is '==' (string matches are, by default, anchored). It may occur at the beginning or
end of a word (with no intervening space) to mean right or left anchored."^" has no
special meaning when it occurs within a word (not at the beginning or end) or string but
must be escaped nevertheless.

o \
Backslash (\) is used to escape '*', '?', quote (") and '^' , as well as itself. Backslash not
followed immediately by one of these characters is an error.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 42 of 65

1021
1022

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

1041
1042
1043

1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

1054

1055

1056

1057

1058

1059

1060
1061

Examples:

o dc.title = c*t
Matches words that start with c and end in t

o dc.title adj "*fish food*"
Matches a word that ends in fish, followed by a word that starts with food

o dc.title = c?t
Matches a three letter word that starts with c and ends in t.

o dc.title adj "^cat in the hat"
Matches 'cat in the hat' where it is at the beginning of the field

o dc.title any "^cat ^dog rat^"
Matches cat at the beginning, dog at the beginning or rat at the end

o dc.title == "\"Of Couse\", she said"
Escape internal double quotes within the term.

• unmasked
Do not apply masking rules, all characters are literal.

• substring
The 'substring' modifier may be used to specify a range of characters (first and last character)
indicating the desired substring within the field to be searched. The modifier takes a value, of the
form "start:end" where start and end obey the following rules:

o Positive integers count forwards through the string, starting at 1. The first character is 1,
the tenth character is 10.

o Negative integers count backwards through the string, with -1 being the last character.
o Both start and end are inclusive of that character.
o If omitted, start defaults to 1 and end defaults to -1.

Examples:

o dc.title =/substring="-5:" title

o marc.008 =/substring="1:6" 920102

o dc.title =/substring=":" "The entire title"

o dc.title =/substring="2:2" h

• regexp
The term should be treated as a regular expression. Any features beyond those found in

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 43 of 65

1062
1063
1064

1065

1066
1067
1068

1069

1071
1072
1073

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

1092

1093
1094

1095
1096
1097
1098
1099

1100
1101

1102
1103

modern POSIX regular expressions are considered to be server dependent. This modifier
overrides the default 'masked' modifier, above. It may be used in either a string or word
context.

Example:

dc.title adj/regexp "(lord|king|ruler) of th[ea] r.*s"
Match lord or king or ruler, followed by of, followed by the or tha, followed by r plus zero or more
characters plus s

A.4 Booleans 1070

A context set cannot define booleans, as these are defined by the CQL grammar. A context set can
define semantics of the booleans defined by the CQL grammar, and this context set defines the following
semantics.

• AND
The combination of two sets of records with AND will result in the set of records that appear in
both of the sets.

• OR
The combination of two sets of records with OR will result in the set of records that appear in
either or both of the sets. It is therefore inclusive OR, not exclusive OR.

• NOT
The combination of two sets of records with NOT will result in the set of records that appear in the
left set, but not in the right hand set. It cannot be used as a unary operator.

• PROX
 The prox (short for proximity) boolean operator allows for the relative locations of the terms to be
used in order to determine the resulting set of records. The semantics of when a match occurs is
defined by the modifiers or defaults for those modifiers, as described below.

A.5 Boolean Modifiers 1091

The CQL context set defines four boolean modifiers, which are only used with the prox boolean operator.

• distance <symbol> <value>
 The distance that the two terms should be separated by.

o Symbol is one of: <, >, <=, >=, =, <>
If the modifier is not supplied, it defaults to <=.

o Value is a non-negative integer. If the modifier is not supplied, it defaults to 1 when
unit=word, or 0 for all other units.

• unit= <value>
 The type of unit for the distance.

o Value is one of: 'paragraph ,sentence, word, element. The default is 'word'.
These values are explicitly undefined. They are subject to interpretation by the server.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 44 of 65

1104
1105

1106
1107
1108

1109
1110
1111

1112

1113
1114

1115
1116
1117
1118

1119
1120
1121

1122

1123

1124
1125
1126
1127
1128
1129
1130

1131

1132

1133
1134
1135
1136
1137

See “Note About Proximity Units” below.

• unordered
The order of the two terms is unimportant. This is the default.

• ordered
 The order of the two terms must be as per the query.

Examples:

• cat prox/unit=word/distance>2/ordered hat
Find 'cat' where it appears more than two words before 'hat'

• cat prox/unit=paragraph hat
Find cat and hat appearing in the same paragraph (distance defaulting to 0) in either order
(unordered default)

• zeerex.set = cql prox/unit=element/distance=0 zeerex.index = resultSetId
Find the cql context set in the same element as the index name resultSetId. E.g. search for
cql.resultSetIds

Note about Proximity Units
As noted above proximity units 'paragraph', 'sentence', 'word' and 'element' are explicitly undefined when
used by the CQL context set. Other context sets may assign them specific values.

Thus compare "prox/unit=word" with "prox/xyz.unit=word". In the first, 'unit' is a prox modifier from the
CQL set, and as such its values are undefined, so 'word' is subject to interpretation by the server. In the
second, 'unit' is a prox modifier defined by the xyz context set, which may assign the unit 'word' a specific
meaning.

Other context sets may define additional units, for example, 'street':

 prox/xyz.unit="street"

 Note that this approach, 'prox/xyz.unit="street"', is preferable to 'Prox/unit=xyz.street'. In the first case,
'unit' is a modifier defined in the xyz context set, and 'street' is a value defined for that modifier. In the
second, 'unit' is a modifier from the cql context set, with a value defined in a different set. so its value
would have to be one that is defined in the cql context set. Pairing a modifier from one set with a value
from another is not a good practice.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 45 of 65

B. Diagnostics 1138

Normative Annex 1139

1140
1141

1142

1143

1144
1145
1146
1147
1148
1149
1150
1151

The diagnostics below are defined for use with the following namespace:

info:srw/diagnostic/1

The number in the first column identifies the specific diagnostic within that namespace (e.g., diagnostic 2
below is identified by the uri: info:srw/diagnostic/1/2). The details format is what should be returned in the
details field. If this column is blank, the format is 'undefined' and the server may return whatever it feels
appropriate, including nothing. Some of the diagnostics from earlier versions of the standards have been
deprecated, however they are still listed here, suitably marked, for reference. For additional explanation of
these diagnostics, see .xxx

General Diagnostics

Number Description (additional description in
notes below)

Details Format

1 General system error Debugging information (traceback)

2 System temporarily unavailable

3 Authentication error

4 Unsupported operation

5 Unsupported version Highest version supported

6 Unsupported parameter value Name of parameter

7 Mandatory parameter not
supplied

 Name of missing parameter

8 Unsupported Parameter Name of the unsupported parameter

 1152

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 46 of 65

Diagnostics Relating to CQL

Number Description (additional description in
notes below)

Details Format

10

Query syntax error

12 Too many characters in query Maximum supported

13 Invalid or unsupported use of
parentheses

 Character offset to error

14 Invalid or unsupported use of
quotes

 Character offset to error

15 Unsupported context set URI or short name of context set

16 Unsupported index Name of index

18 Unsupported combination of
indexes

 Space delimited index names

19 Unsupported relation Relation

20 Unsupported relation modifier Value

21 Unsupported combination of
relation modifers

 Slash separated relation modifiers

22 Unsupported combination of
relation and index

 Space separated index and relation

23 Too many characters in term Length of longest term

24 Unsupported combination of
relation and term

 Space separated relation and term

26 Non special character escaped
in term

 Character incorrectly escaped

27 Empty term unsupported

28 Masking character not
supported

29 Masked words too short Minimum word length

30 Too many masking characters
in term

 Maximum number supported

31 Anchoring character not
supported

32 Anchoring character in Character offset

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 47 of 65

unsupported position

33 Combination of
proximity/adjacency and
masking characters not
supported

34 Combination of
proximity/adjacency and
anchoring characters not
supported

35 Term contains only stopwords Value

36 Term in invalid format for index
or relation

37 Unsupported boolean operator Value

38 Too many boolean operators in
query

 Maximum number supported

39 Proximity not supported

40 Unsupported proximity relation Value

41 Unsupported proximity distance Value

42 Unsupported proximity unit Value

43 Unsupported proximity ordering Value

44 Unsupported combination of
proximity modifiers

 Slash separated values

46 Unsupported boolean modifier Value

47 Cannot process query; reason
unknown

48 Query feature unsupported Feature

49 Masking character in
unsupported position

 the rejected term

50 Result sets not supported

51 Result set does not exist Result set identifier

52 Result set temporarily unavailable Result set identifier

53 Result sets only supported for
retrieval

55 Combination of result sets with

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 48 of 65

search terms not supported

58 Result set created with
unpredictable partial results
available

59 Result set created with valid
partial results available

60 Result set not created: too many
matching records

 Maximum number

Diagnostics Relating to Records

Number Description (additional description in
notes below)

Details Format

61 First record position out of range

64 Record temporarily unavailable

65 Record does not exist

66 Unknown schema for retrieval Schema URI or short name

67 Record not available in this
schema

 Schema URI or short name

68 Not authorised to send record

69 Not authorised to send record in
this schema

70 Record too large to send Maximum record size

71 Unsupported record packing

72 XPath retrieval unsupported

73 XPath expression contains
unsupported feature

 Feature

74 Unable to evaluate XPath
expression

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 49 of 65

Diagnostics Relating to Sorting

Number Description (additional description in
notes below)

Details Format

80 Sort not supported

82 Unsupported sort sequence Sequence

83 Too many records to sort Maximum number supported

84 Too many sort keys to sort Maximum number supported

86 Cannot sort: incompatible record
formats

87 Unsupported schema for sort URI or short name of schema given

88 Unsupported path for sort XPath

89 Path unsupported for schema XPath

90 Unsupported direction Value

91 Unsupported case Value

92 Unsupported missing value
action

 Value

93 Sort ended due to missing value

 1153

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 50 of 65

Diagnostics relating to Stylesheets

Number Description (additional description in
notes below)

Details Format

110 Stylesheets not supported

111 Unsupported stylesheet URL of stylesheet

Diagnostics relating to Scan

Number Description (additional description in
notes below)

Details Format

120 Response position out of range

121 Too many terms requested

 maximum number of terms

 1154

1155

1156

1157

Notes

No. Cat. Description Notes/Examples

1 general General system
error

The server returns this error when it is
unable to supply a more specific
diagnostic. The sever may also optionally
supply debugging information.

2 general System temporarily
unavailable

The server cannot respond right now,
perhaps because it's in a maintenance
cycle, but will be able to in the future.

3 general Authentication
error

The request could not be processed due to
lack of authentication.

4 general Unsupported
operation

Currently three operations are defined --
searchRetrieve, explain, and scan.
searchRetrieve and explain are
mandatory, so this diagnostic would apply
only to scan, or in searchRetrieve where
an undefined operation is sent.

5 general Unsupported
version

Currently only version 1.1 is defined and
so thisëgnostic has no meaning. In the
future, when another version is defined, for
example version 1.2, this diagnostic may
be returned when the server receives a
request where the version parameter

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 51 of 65

indicates 1.2, and the server doesn't
support version 1.2.

6 general Unsupported
parameter value

This diagnostic might be returned for a
searchRetrieve request which includes the
recordPacking parameter with a value of
'xml', when the server does not support
that value. The diagnostic might supply the
name of parameter, in this case
'recordPacking'.

7 general Mandatory
parameter not
supplied

This diagnostic might be returned for a
searchRetrieve request which omits the
query parameter. The diagnostic might
supply the name of missing parameter, in
this case 'query'.

8 general Unsupported
Parameter

This diagnostic might be returned for a
searchRetrieve request which includes the
recordXPath parameter when the server
does not support that parameter. The
diagnostic might supply the name of
unsupported parameter, in this case
'recordXPath'.

10 query Query syntax error

The query was invalid, but no information
is given for exactly what was wrong with it.
Eg. dc.title foo fish (The reason is that foo
isn't a valid relation in the default context
set, but the server isn't telling you this for
some reason)

12 query Too many
characters in query

The length (number of characters) of the
query exceeds the maximum length
supported by the server.

13 query Invalid or
unsupported use of
parentheses

The query couldn't be processed due to
the use of parentheses. Typically either
that they are mismatched, or in the wrong
place. Eg. (((fish) or (sword and (b or) c)

14 query Invalid or
unsupported use of
quotes

The query couldn't be processed due to
the use of quotes. Typically that they are
mismatched Eg. "fish'

15 query Unsupported
context set

A context set given in the query isn't
known to the server. Eg. foo.title any fish

16 query Unsupported index The index isn't known, possibly within a
context set. Eg. dc.author any sanderson
(dc has a creator index, not author)

18 query Unsupported
combination of
indexes

The particular use of indexes in a boolean
query can't be processed. Eg. The server
may not be able to do title queries merged
with description queries.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 52 of 65

19 query Unsupported
relation

A relation in the query is unknown or
unsupported. Eg. The server can't handle
'within' searches for dates, but can handle
equality searches.

20 query Unsupported
relation modifier

A relation modifier in the query is unknown
or unsupported by the server. Eg. 'dc.title
any/fuzzy starfish' when fuzzy isn't
supported.

21 query Unsupported
combination of
relation modifers

Two (or more) relation modifiers can't be
used together. Eg. dc.title
any/cql.word/cql.string "star fish"

22 query Unsupported
combination of
relation and index

While the index and relation are
supported, they can't be used together.
Eg. dc.author within "1 5"

23 query Too many
characters in term

The term is too long. Eg. The server may
simply refuse to process a term longer
than a given length.

24 query Unsupported
combination of
relation and term

The relation cannot be used to process the
term. Eg dc.title within "sanderson"

26 query Non special
character escaped
in term

Characters may be escaped incorrectly Eg
"\a\r\n\s"

27 query Empty term
unsupported

Some servers do not support the use of an
empty term for search or for scan. Eg:
dc.title > ""

28 query Masking character
not supported

A masking character given in the query is
not supported. Eg. The server may not
support * or ? or both

29 query Masked words too
short

The masked words are too short, so the
server won't process them as they would
likely match too many terms. Eg. dc.title
any *

30 query Too many masking
characters in term

The query has too many masking
characters, so the server won't process
them. Eg. dc.title any "???a*f??b* *a?"

31 query Anchoring
character not
supported

The server doesn't support the anchoring
character (^) Eg dc.title = "^jaws"

32 query Anchoring
character in
unsupported
position

The anchoring character appears in an
invalid part of the term, typically the middle
of a word. Eg dc.title any "fi^sh"

33 query Combination of
proximity/adjacenc

The server cannot handle both adjacency
(= relation for words) or proximity (the

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 53 of 65

y and masking
characters not
supported

boolean) in combination with masking
characters. Eg. dc.title = "this is a titl* fo? a
b*k"

34 query Combination of
proximity/adjacenc
y and anchoring
characters not
supported

Similarly, the server cannot handle
anchoring characters.

35 query Term contains only
stopwords

If the server does not index words such as
'the' or 'a', and the term consists only of
these words, then while there may be
records that match, the server cannot find
any. Eg. dc.title any "the"

36 query Term in invalid
format for index or
relation

This might happen when the index is of
dates or numbers, but the term given is a
word. Eg dc.date > "fish"

37 query Unsupported
boolean operator

For cases when the server does not
support all of the boolean operators
defined by CQL. The most commonly
unsupported is Proximity, but could be
used for NOT, OR or AND.

38 query Too many boolean
operators in query

There were too many search clauses
given for the server to process.

39 query Proximity not
supported

Proximity is not supported at all.

40 query Unsupported
proximity relation

The relation given for the proximity is
unsupported. Eg the server can only
process = and > was given.

41 query Unsupported
proximity distance

The distance was too big or too small for
the server to handle, or didn't make sense.
Eg 0 characters or less than 100000 words

42 query Unsupported
proximity unit

The unit of proximity is unsupported,
possibly because it is not defined.

43 query Unsupported
proximity ordering

The server cannot process the requested
order or lack thereof for the proximity
boolean

44 query Unsupported
combination of
proximity modifiers

While all of the modifiers are supported
individually, this particular combination is
not.

46 query Unsupported
boolean modifier

A boolean modifier on the request isn't
supported.

47 query Cannot process
query; reason
unknown

The server can't tell (or isn't telling) you
why it can't execute the query, maybe it's a
bad query or maybe it requests an
unsupported capability.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 54 of 65

48 query Query feature
unsupported

the server is able (contrast with 47) to tell
you that something you asked for is not
supported.

49 query Masking character
in unsupported
position

eg, a server that can handle xyz* but not
*xyz or x*yz

50 result set Result sets not
supported

The server cannot create a persistent
result set.

51 result set Result set does not
exist

The client asked for a result set in the
query which does not exist, either because
it never did or because it had expired.

52 result set Result set
temporarily
unavailable

The result set exists, it cannot be
accessed, but will be able to be accessed
again in the future.

53 result set Result sets only
supported for
retrieval

Other operations on results apart from
retrieval, such as sorting them or
combining them, are not supported.

55 result set Combination of
result sets with
search terms not
supported

Existing result sets cannot be combined
with new terms to create new result sets.
eg cql.resultsetid = foo not dc.title any fish

58 result set Result set created
with unpredictable
partial results
available

The result set is not complete, possibly
due to the processing being interupted mid
way through. Some of the results may not
even be matches.

59 result set Result set created
with valid partial
results available

All of the records in the result set are
matches, but not all records that should be
there are.

60 result set Result set not
created: too many
matching records

There were too many records to create a
persistent result set.

61 records First record
position out of
range

For example, if the request matches 10
records, but the start position is greater
than 10.

64 records Record temporarily
unavailable

The record requested cannot be accessed
currently, but will be able to be in the
future.

65 records Record does not
exist

The record does not exist, either because
it never did, or because it has
subsequently been deleted.

66 records Unknown schema
for retrieval

The record schema requested is unknown.
Eg. the client asked for MODS when the
server can only return simple Dublin Core

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 55 of 65

67 records Record not
available in this
schema

The record schema is known, but this
particular record cannot be transformed
into it.

68 records Not authorised to
send record

This particular record requires additional
authorisation in order to receive it.

69 records Not authorised to
send record in this
schema

The record can be retrieved in other
schemas, but the one requested requires
futher authorisation.

70 records Record too large to
send

The record is too large to send.

71 records Unsupported
record packing

The server supports only one of string or
xml, or the client requested a
recordPacking which is unknown.

72 records XPath retrieval
unsupported

The server does not support the retrieval
of nodes from within the record.

73 records XPath expression
contains
unsupported
feature

Some aspect of the XPath expression is
unsupported. For example, the server
might be able to process element nodes,
but not functions.

74 records Unable to evaluate
XPath expression

The server could not evaluate the
expression, either because it was invalid
or it lacks some capability.

80 sort Sort not supported the server cannot perform any sort; that is
the server only returns data in the default
sequence.

82 sort Unsupported sort
sequence

The particular sequence of sort keys is not
supported, but the keys may be supported
individually.

83 sort Too many records
to sort

used when the server will only sort result
sets under a certain size and the request
returned a set larger than that limit.

84 sort Too many sort
keys to sort

the server can accept a sort statement
within a request but cannot deliver as
requested, e.g. the server can sort by a
maximum of 2 keys only such as "title" and
"date" but was requested to sort by "title",
"author" and "date".

86 sort Cannot sort:
incompatible
record formats

The result set includes records in different
schemas and there is insufficient
commonality among the schemas to
enable a sort.

87 sort Unsupported
schema for sort

the server does not support sort for
records in a particular schema, e.g. it
supports sort for records in the DC

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 56 of 65

schema but not in the ONIX schema.

88 sort Unsupported path
for sort

the server can accept a sort statement
within a request but cannot deliver as
requested, e.g. the server can deliver in
title or date sequence but subject was
requested.

89 sort Path unsupported
for schema

The path given cannot be generated for
the schema requested. For example
asking for /record/fulltext within the simple
Dublin Core schema

90 sort Unsupported
direction

the server can accept a sort statement
within a request but cannot deliver as
requested, e.g. the server can deliver in
ascending only but descending was
requested.

91 sort Unsupported case the server can accept a sort statement
within a request but cannot deliver as
requested, e.g. the server's index is single
case so sorting case sensitive is
unsupported

92 sort Unsupported
missing value
action

the server can accept a sort statement
within a request but cannot deliver as
requested. For example, the request
includes a constant that the server should
use where a record being sorted lacks the
data field but the server cannot use the
constant to override its normal behavior,
e.g. sorting as a high value.

93 sort Sort ended due to
missing value

missingValue of >abort=

110 stylesheet Stylesheets not
supported

The server does not support stylesheets,
or a stylesheet was requested from an
SRW server.

111 stylesheet Unsupported
stylesheet

This particular stylesheet is not supported,
but others may be.

120 scan Response position
out of range

The request includes a position in
response that is not valid for the list. For
example a request indicates a response
position = 15 and maximum terms = 20,
meaning that it wants a response to
include 15 entries before the term, plus the
term, then another 4. The server would
return this diagnostic if there were not 15
previous entries.

121 scan Too many terms Say you ask for 500 terms and the server
has a (fixed) maximum of 300. It would

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 57 of 65

requested supply a value of '300' for details. If
'details' is not supplied, this might mean
that the server doesn't have a fixed
maximum and was just unable to deliver
all the requested terms.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 58 of 65

C. NISO Z39.92 (ZeeRex) 1158

Normative Annex 1159

1160

1161

1162

1163

1164
1165

1166
1167

1168

1169
1170

1171

1172

1173

1174

1175

1176

1177

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

ZeeRex Summary

• The protocol attribute on the serverInfo element MUST have the value: SRU

• The transport attribute on the serverInfo element MUST be one of: http or https

• The method attribute on the serverInfo element MUST be a space separated list, comprising any
number of the following values: GET POST SOAP

• The database element within serverInfo MUST contain the path section of the URL to the server,
without the first / and up to the ?

• The set element within indexInfo is used to define the short names of context sets.

• Indexes are described by including the name of the index in the name element within map, and
the short name for the context set in the set attribute on that element.

• The schemaInfo section is used to described the schemas supported by the server.

Examples

The following URLs would all retrieve the explain document:

• http://myserver.com/cgi/mysru?operation=explain&version=1.1&recordPacking=xml

• http://myserver.com/cgi/mysru?

• http://myserver.com/cgi/mysru

The corresponding response from the server would be:

 <sru:explainResponse xmlns:sru="http://www.loc.gov/zing/srw/">
 <sru:version>1.1</sru:version>
 <sru:record>
 <sru:recordPacking>XML</sru:recordPacking>
 <sru:recordSchema>http://explain.z3950.org/dtd/2.1/</sru:recordSchema>
 <sru:recordData>

 <zr:explain xmlns:zr="http://explain.z3950.org/dtd/2.1/">
 <zr:serverInfo protocol="SRU" version="1.2" transport="http"
 method="GET POST SOAP">

http://myserver.com/cgi/mysru?operation=explain&version=1.1&recordPacking=xml
http://myserver.com/cgi/mysru
http://myserver.com/cgi/mysru

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 59 of 65

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

 <zr:host>myserver.com</zr:host>
 <zr:port>80</zr:port>
 <zr:database>cgi/mysru</zr:database>
 </zr:serverInfo>
 <zr:databaseInfo>
 <title lang="en" primary="true">SRU Test Database</title>
 </zr:databaseInfo>
 <zr:indexInfo>
 <zr:set name="dc" identifier="info:srw/cql-context-set/1/dc-v1.1"/>
 <zr:index>
 <zr:map><zr:name set="dc">title</zr:name></zr:map>
 </zr:index>
 </zr:indexInfo>
 <zr:schemaInfo>
 <zr:schema name="dc" identifier="info:srw/schema/1/dc-v1.1">
 <zr:title>Simple Dublin Core</zr:title>
 </zr:schema>
 </zr:schemaInfo>
 <zr:configInfo>
 <zr:default type="numberOfRecords">1</zr:default>
 <zr:setting type="maximumRecords">50</zr:setting>
 <zr:supports type="proximity"/>
 </zr:configInfo>
 </zr:explain>

 </sru:recordData>
 </sru:record>
 </sru:explainResponse>

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 60 of 65

D. OpenSearch 1216

This Annex describes the [OpenSearch] binding for the Search interface. The intent is to encourage
servers to support OpenSearch.

1217
1218

1219
1220

1221

1222
1223
1224
1225

1226

1228
1229
1230

1231
1232
1233

The existing (legacy) OpenSearch specification can be found at
http://www.opensearch.org/Specifications/OpenSearch/1.1/Draft_3

(Note:this URL will be updated if the specification is updated prior to publication of this standard.)

 This annex is intended to be compatible with that (legacy) specification. However the protocol as
specified by this standard supports OpenSearch functionality (thougn not in a manner that is
interoperable with the legacy OpenSearch spec) and OpenSearch users are encouraged to migrate to
this standard.

D.1 OpenSearch Description Document 1227

In order for an OpenSearch client to initiate a search on a server that implements the Search Web
Services interface, the server must the server must expose its supported search queries by declaring
them in its OpenSearch Description document.

A server should serve an OpenSearch description document as a resource at the following URL relative
to the base URL for the server:

#Open Search description document URL 1234
/search/opensearchdescription.xml 1235

1236
1237
1238
1239
1240
1241
1242

Listing 1: OpenSearch Description Document Relative URL

The following listing shows an example of an OpenSearch Description document for a server that
supports a Search WS interface.
There is a name associated with the Search WS specification (alias “sws”).

<?xml version=" 1.0" encoding="UTF-8"?> 1243
<OpenSearchDescription 1244
 xmlns="http://a9.com/-/spec/opensearch/1.1/" 1245
 xmlns:sws="urn:oasis:names:tc:search-ws:param-query:xsd:1.0" 1246
 > 1247
 1248
 <ShortName>Example Search Engine for Search WS</ShortName> 1249
 <Description>Use any OpenSearch client to search this engine using template 1250
URLs declared in Url elements below.</Description> 1251
 <Tags>Search WS OASIS</Tags> 1252
 <Contact>admin@example.com</Contact> 1253
 1254
 <!--Template URL for FindById query--> 1255
 <Url type="application/sws+xml" 1256

http://www.opensearch.org/Specifications/OpenSearch/1.1/Draft_3

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 61 of 65

 1257
template="http://example.com/search?query={sws:query}&responseFormat={sws:resp1258
onseFormat?}&version={sws:version}&startRecord={sws:startRecord?}&maximumRecor1259
ds={sws:maximumRecords?}&language={sws:language?}"/> 1260
 1261
</OpenSearchDescription> 1262

1263
1264

1266
1267
1268

1269
1270
1271
1272
1273

1274

1275

1276

1277
1278

1279

Listing 2: Example: OpenSearch Description Document

D.2 OpenSearch URL Template 1265

Within the OpenSearch Description document the most important elements are the URL templates. Each
URL template declares a parameterizes query supported by the server and defines a template for the
URL to invoke it.

When describing URL template we will use a URL structure as follows:

http_URL = "http:" "//" host [":" port] [abs_path_prefix “/” abs_path_suffix ["?" queryOption]]

The rules for defining a URL template structure are as follows:

 The URL template MAY be implementation specific upto and including the abs_path_prefix

 The URL template MUST have a abs_path_suffix of “/search”

 Each primitive Request parameter is mapped to a queryOption that must be declared

 If the parameter is equivalent to a standard OpenSearch parameter then it should use a
parameter name as an unqualified name as defined in Table 1:

Request
Parameter

OpenSearch Parameter

maximumRecords count

startRecord startIndex

language language

Table 1: Mapping of Response Parameters to Standard OpenSearch Parameters

 1280

1281
1282
1283

1284
1285

1287
1288
1289

 If the parameter has no equivalent standard OpenSearch parameter then its should declare
its template as a qualified name (Qname) within the “sws” namespace defined by this
specification

 Each template parameter should indicate if it is optional according to the specification for the
Request parameter within this specification

D.3 OpenSearch Response Elements 1286

A server must return the search response in a format specified by the responseFormat parameter of the
scanOperation Request. If no responseFormat parameter is specified then it MUST return the response
in the default responseFormat defined by this specification If the server does not support the requested

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 62 of 65

1290
1291

1292
1293
1294

responseFormat then it MUST send an error response with a diagnostic of UnsupportedFormatException
appropriate error status code as defined in Appendix B.

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 63 of 65

E. Authentication, Authorization, and Access Control 1295

NON-NORMATIVE ANNEX 1296

1297
1298
1299
1300
1301
1302
1303
1304
1305

1306
1307
1308

1309
1310
1311

1313
1314

1315
1316

1317

1319
1320
1321
1322

1324
1325
1326
1327
1328

1330
1331
1332
1333

Authentication, authorization, and access control are outside the scope of this standard. This non-
normative Annex provides suggested approaches.
Some business models may impose requirements, for example, to ensure that one user does not modify
another's result sets, to allow a server to restrict a user to a pre-determined number of searches before
charges are imposed, or to limit the number of concurrent searches for a user or number within a certain
time frame. Or, on the other hand, if it can be demonstrated that a search has led directly to a sale, then
the user may receive a commission. Another example is to enable the service to track how different users
use the system, possibly to enforce acceptable usage policies.

This section aims to discuss the various methods in which different users may be authenticated in an
interoperable manner. In a stateless environment, or one where the ability to track individual users is not
important, this can be ignored without peril.

There are several technical methods by which distinct users may be identified, from IP address to
additional header information to SSL. The different methods create additional requirements and function
at various levels of success.

E.1 Authentication 1312

A server SHOULD support HTTP Basic authentication, HTTP/S Digest authentication for all bindings that
use the HTTP transport protocol.

If a server supports single sign-on using an external authentication authority it SHOULD do so using
SAML 2.0 protocols, profiles and bindings.

E.2 Authorization and Access Control 1318

A server is free to use any suitable mechanisms for authorization and access control of a client
connection. A server MUST remove any results from the search result set that the client is not authorized
to retrieve. A server SHOULD masking any parts of a result if the user is not authorized to see that part of
the result. An example is the use of '*' to mask a password value.

E.3 IP Address 1323

 Users may be differentiated by the IP address from which they are connecting to the server.
Unfortunately this is unreliable at best due to the increasing use of web proxy systems -- there may be
many users all of which appear to be coming from the same IP address due to a proxy. The advantage is
that it is completely transparent to the client and hence the user, so for a small service may be
appropriate.

E.4 Basic Authentication 1329

 Basic Authentication is the fairly simple method used in many web servers to authenticate users against
a list or database -- the client is required to send a username and password. This is a very easy-to-
configure method to authenticate users, however it does not allow for users that are not authenticated --

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 64 of 65

1334
1335
1336

1338
1339
1340
1341
1342

1344
1345

every request must have a valid user and password sent or it will be rejected. This model is appropriate
for a paid-for service or one which is used only by a set of known individuals, but is less appropriate for a
service which may be used by anyone.

E.5 Secure Sockets 1337

 SSL is an encrypted version of HTTP (https) and hence is more secure than basic authentication alone
as the traffic cannot be easily intercepted. For financial transations this is certainly appropriate as the
user is already known in advance and every care for the data must be taken. However for every day
services that may be used by anyone, it is a very complex solution.

E.6 Additional Message Data 1343

 The preferred method for identifying users while still allowing non-authenticated access is by the
inclusion of an additional field in the extraRequestData and extraResponseData fields. This method
allows the server to chose when authentication is required (for example only if a resultset is needed) and
when it can continue to act in a stateless fashion. This may be appropriate for any sort of transaction with
the exception of cases when the data should be conveyed in an encrypted fashion, in which case SSL
should be used as well.

1346
1347
1348
1349
1350

1351
1352
1353
1354

1355
1356
1357

1358

1360

1361
1362
1363
1364
1365
1366

The recommended name for this field is authenticationToken, and hence x-authenticationToken when it is
passed on the URL-. If the server sends back one of these tokens with a response, then the client should
return it in the same fashion in any subsequent request to allow the server to know that the requests
should be considered to be from the same user.

Further business logic may be required to manipulate these tokens. For example a separate SOAP
service may be required to distribute the tokens on request, to delete tokens when they've finished being
used or to enable the sharing of such tokens between users to allow shared access to result sets..

The URI for the namespace for this extension is info:srw/extension/2/auth-1.0

E.7 Web Services Security and Security Assertion Markup Language 1359
(SAML) Security Tokens

 The OASIS committee has defined the Web Services Security (WS-Security) Standard1[1] which specifies
how different security tokens, signature formats and encryption technologies are to be used for secure
Web service, in terms of end-to-end message content security, and not just transport-level security. The
signatures and security tokens are defined within the <wsse:Security> element of a SOAP message
header.

1[1] http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

Discussion Document 2 November 2007
Copyright © OASIS® 1993–2007. All Rights Reserved. Page 65 of 65

1367
1368
1369
1370
1371
1372

1373
1374
1375
1376

1377

1378
1379

An important security token format used by WS-Security is the SAML Security Token. The SAML
standard2[2] specifies how authentication and attribute assertions about a subject can be made from a
trusted source. In a federated environment, these assertions would typically come from a trusted
authentication and attribute authority (referred to as the Identity Provider), and allow the receiver (often
referred to as the Service Provider) to make authorization decisions based on these attributes. The
assertions are signed to ensure integrity, and can optionally be encrypted to preserve confidentiality.

By leveraging WS-Security and SAML tokens, an SRU/SRW search service (acting as a Service Provider
in the SAML scenario above) can authenticate and authorize a search request simply based on the SAML
assertions contained in its request header. This allows the search service to be available to a much wider
set of users from many different security domains, not just the traditional local security domain.

2[2] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv20

	1 Introduction
	1.1 Terminology
	1.2 Normative References
	1.3 Non-Normative References

	2 Search Web Service Overview
	3 Contextual Query Language
	3.1 Query Syntax
	3.1.1 Basic Query Structure
	3.1.2 Search Clause
	3.1.3 Search Term
	3.1.4 Index Name
	3.1.5 Relation
	3.1.6 Relation Modifiers
	3.1.7 Boolean Operators
	3.1.8 Boolean Modifiers
	3.1.9 Proximity Modifiers
	3.1.10 Sorting
	3.1.11 Prefix Assignment
	3.1.12 Case Sensitivity

	3.2 BNF
	3.3 Context Sets

	4 The searchRetrieve operation
	4.1 Request Parameters
	4.2 Response Parameters
	4.3 Version: the “version” Parameter
	4.4 Records
	4.4.1 Record Parameters
	4.4.2 Record Packing

	4.5 Result Sets
	4.5.1 Result Set Model
	4.5.2 resultSetId
	4.5.3 ResultSet Idle Time

	4.6 Diagnostics
	4.6.1 Diagnostic Categories: Fatal vs. Non-fatal, and Surrogate Vs. Non-Surrogate
	4.6.2 Diagnostic Schema

	4.7 Extensions: the “extraRequestData’, ‘extraResponseData’, and xtraRecordData’ Parameters
	4.8 Echoing the Request: The “echoedSearchRetrieveRequest” Parameter
	4.8.1 xQuery
	4.8.2 baseUrl

	4.9 Stylesheets: the ‘stylesheet’ Parameter

	5 Scan Operation
	5.1 Request Parameters
	5.2 Response Parameters
	5.3 Terms
	5.4 Example Scan Response

	6 The Explain Facility
	6.1 Explain Operation
	6.1.1 Request Parameters

	7 XML and WSDL Files
	8 Transports
	8.1 HTTP Get Binding
	8.1.1 Syntax
	8.1.2 Encoding Issues
	8.1.3 Server Procedure

	8.2 HTTP Post Binding
	8.3 SOAP Binding
	8.3.1 SOAP Requirements
	8.3.2 SOAP Parameter Differences
	8.3.3 Extension Parameters via SOAP

