
h

ELECTRONIC PUBLISHING, VOL . 3(4), 177–178 (NOVEMBER 1990)

Editorial

This issue of EP-odd is the second of two on hypertext and hypermedia topics. The field
addressed in these papers has been in existence for more than 25 years, but the major
activity (as measured by popular interest, the number of researchers, and successful
commercial ventures) has been within the past decade. In the early years, hypertext was
fairly easy to define because there were only two implemented computer systems to
consider, namely Engelbart’s NLS/Augment and Brown University’s HES/FRESS. Both
systems shared similar characteristics, incorporating a realization of hypertext that can be
summarized as consisting of a graph and a separate “browser” that processed the graph.
Consequently, it is the browser that defines a reader’s capabilities on the graph. In this
view, which we will refer to as the graph model, there is a clear distinction between the
graph (which we can consider to be a hypertext document) and the browser program.

In the second generation of systems, hypertext evolved in several ways as more
researchers began investigating the nature of, and applications for, linked information
structures. Systems that contributed to this expansion of the domain include Xanadu,
Neptune/Ham, NoteCards, Concordia/Document Examiner, Intermedia, gIBIS, KMS,
HyperTIES, and Guide. By the mid-eighties, an evolution of some systems away from
the graph model was emphasised significantly by Apple’s HyperCard, which illustrates
(with a vengeance) what we will call the program model. In this way of thinking, a
hypertext is not a processed graph, but instead is a self-contained program that directly
encodes the behavior a reader should experience when reading the hypertext. The
browser program of a graph-model system is replaced in the program model by some-
thing closer to a run-time interpreter for a programming language. A document in the
program model can best be thought of as a program in a language that has specialized
support for graphical input and output.

Since hypertext systems were designed in large part by computer scientists, it is not a
surprise that the program model’s specification languages resemble traditional general-
purpose programming languages in form and in power. We feel that an important trend
in the development of the program model, a development that parallels the development
of programming languages, is a turning away from large, “kitchen-sink” languages,
towards smaller languages based on simpler, more focused, forms of specification. Such
deliberate restriction of the language’s generality can reduce the complexity of
specification and can permit inclusion of additional capabilities in the hypertext system.
For example, the use of formal automata (for example, state machines and Petri nets) can
allow analyses and transformations that cannot readily be performed on the HyperCard-
style documents (which are also, in a formal sense, automata, but are in the inherently
complex class of Turing machines).

Another evolutionary trend to come out of work on the graph model has been the
development of augmented graph models, such as semantic nets and other knowledge
representations. The concept of a static document and its companion browser program is
retained, but more of the semantics of the browser are abstracted out and placed into
some formal amendment of the directed graph that is the document. Again, we see a

0894–3982/90/040177–02$05.00 Received 18 February 1991
 1990 by John Wiley & Sons, Ltd.
© 1998 by University of Nottingham.

h

178 EDITORIAL

move away from all capabilities being contained in the browser code and towards formal
abstraction of important capabilities within the document representation. Formal
abstractions, whether automata or augmented graphs, or some as-yet-unidentified
approach, make system-independent documents a real near-term possibility instead of a
desirable but far-off goal. This also parallels the developmental history of programming
languages, in that abstraction features have become standard fare (e.g., OOP) instead of
something programmers were free to implement in each program if they chose to do so.

There is a tremendous amount of commercial interest in current hypertext systems,
resulting in a tendency to compare hypertext systems from a “feature-based” perspective.
To our mind, the power, generality, expressiveness, and simplicity of the abstractions
and models also are important in characterization of a hypertext system. Paying attention
to the abstractions and models helps to identify not only the system’s current strengths
and weaknesses but also the ease and consistency with which the system (and documents
created for the system) will be able to be adapted to future changes in the environment in
which the system operates.

In closing we would like to acknowledge the many referees that helped us select these
six papers. The papers presented in these two issues went through the normal EP-odd
refereeing process, but because of the number of submissions and because of scheduling
deadlines, we had to ask the referees to complete their reviews in an especially short
amount of time. We would especially like to thank the referees for their willingness to
help out under these additional time constraints. We also wish to thank David Brailsford
for handling the refereeing of our own paper that appears in this issue.

P. DAVID STOTTS AND RICHARD FURUTA

