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Abstract

We propose a mathematical framework for a unifica-
tion of the distributional theory of meaning in terms
of vector space models, and a compositional theory for
grammatical types, namely Lambek’s pregroup seman-
tics. A key observation is that the monoidal category of
(finite dimensional) vector spaces, linear maps and the
tensor product, as well as any pregroup, are examples
of compact closed categories. Since, by definition, a
pregroup is a compact closed category with trivial mor-
phisms, its compositional content is reflected within the
compositional structure of any non-degenerate compact
closed category. The (slightly refined) category of vec-
tor spaces enables us to compute the meaning of a com-
pound well-typed sentence from the meaning of its con-
stituents, by ‘lifting’ the type reduction mechanisms of
pregroup semantics to the whole category. These sen-
tence meanings live in a single space, independent of
the grammatical structure of the sentence. Hence we
can use the inner-product to compare meanings of ar-
bitrary sentences. A variation of this procedure which
involves constraining the scalars of the vector spaces
to the semiring of Booleans results in the well-known
Montague semantics.

Introduction
This paper combines, and then exploits, three results pre-
sented at the 2007 Quantum Interaction symposium. The
first author and Pulman proposed the use of the Hilbert space
tensor product to assign a distributional meaning to sen-
tences (Clark & Pulman 2007). The second author showed
that the Hilbert space formalism for quantum mechanics,
when recast in category-theoretic terms, admits a true logic
which enables automation (Coecke 2007). The third author
showed that the logic of pregroup semantics for grammati-
cal types is an essential fragment of this logic of the Hilbert
space formalism (Sadrzadeh 2007).

The symbolic (Dowty, Wall, & Peters 1981) and distri-
butional (Schuetze 1998) theories of meaning are some-
what orthogonal with competing pros and cons: the for-
mer is compositional but only qualitative, the latter is non-
compositional but quantitative.1 Following (Smolensky &

1See (Gazdar 1996) for a discussion of the two competing
paradigms in Natural Languge Processing.

Legendre 2005) in the context of Cognitive Science, where
a similar problem exists between the connectionist and sym-
bolic models of mind, the first author and Pulman argued for
the use of the tensor product of vector spaces. They sug-
gested that to implement this idea in linguistics one can, for
example, traverse the parse tree of a sentence and tensor the
vectors of the meanings of words with the vectors of their
roles:

(
−−→
John ⊗

−−→
subj)⊗

−−→
likes ⊗ (

−−−→
Mary ⊗

−→
obj)

This vector in the tensor product space should then be re-
garded as the meaning of the sentence ‘John likes Mary’. In
this paper we will also pair vectors in meaning spaces and
grammatical types, but in a way which overcomes some of
the shortcomings of (Clark & Pulman 2007). One short-
coming is that, since inner-products can only be computed
between vectors which live in the same space, sentences can
only be compared if they have the same grammatical struc-
ture. In this paper we provide a procedure to compute the
meaning of any sentence as a vector within a single space. A
second problem is the lack of a method to compute the vec-
tors representing the grammatical type; the procedure pre-
sented here does not require such vectors.

Abramsky and the second author proposed a categori-
cal quantum axiomatics as a high-level framework to rea-
son about quantum phenomena. Primarily this categori-
cal axiomatics is a logic which lives on top of linear and
multi-linear algebra and hence also applies to the use of
vector space machinery outside the domain of quantum
physics. The passage to the category-theoretic level al-
lows for much simpler mathematical structures than vector
spaces to exhibit quantum-like features. For example, while
there is nothing quantum about sets, when organised in a
category with relations (not functions) as morphisms and
cartesian product (not disjoint union) as tensor, many typ-
ical quantum features emerge (Abramsky & Coecke 2004;
Coecke 2005b). A syntax for these more general ‘pseudo
quantum categories’ – more precisely, tensorial matrix cal-
culi over some semiring – can be found in (Abramsky &
Duncan 2006). In this paper we will exploit both the cate-
gorical logic which lives on top of vector spaces as well as
the fact that it also lives on a much simper relational variant.

The use of pregroups for analysing the structure of nat-
ural languages is a recent development by (Lambek 1999)



which builds on the original Lambek calculus (Lambek
1958) where types are used to analyze the syntax of natu-
ral languages in a simple algebraic setting. Pregroups have
been used to analyze the syntax of many languages, for ex-
ample English (Lambek 2004), French (Bargelli & Lambek
2001b), Arabic (Bargelli & Lambek 2001a), Italian (Casadio
& Lambek 2001), and Persian (Sadrzadeh 2006). They have
also been provided with a Montague-style semantics (Preller
2007) which equips them with a translation into the lambda
calculus and predicate logic. As discussed in (Sadrzadeh
2007) pregroups are posetal instances of the categorical
logic of vector spaces as in (Abramsky & Coecke 2004)
where juxtaposition of types corresponds to the tensor prod-
uct of the monoidal category of vector spaces, linear maps
and the tensor product. The diagrammatic toolkit of ‘non-
commutative’ categorical quantum logic introduces reduc-
tion diagrams for typing sentences and allows the compar-
ison of the grammatical patterns of sentences in different
languages (Sadrzadeh 2006).

Here we blend these three ideas together, and articulate
the result in a rigourous formal manner. We provide a math-
ematical structure where the meanings of words are vectors
in vector spaces, their grammatical roles are types in a pre-
group, and tensor product is used for the composition of
meanings and types. We will pass from vector spaces to the
category of vector spaces equipped with the tensor product,
and refine this structure with the non-commutative aspects
of the pregroup structure. Type-checking is now an essential
fragment of the overall categorical logic. The vector spaces
enrich these types with quantities: the reduction scheme to
verify grammatical correctness of sentences will not only
provide a statement on the well-typedness of a sentence, but
will also assign a vector in a vector space to each sentence.
Hence we obtain a theory with both pregroup analysis and
vector space models as constituents, but which is inherently
compositional and assigns a meaning to a sentence given
the meanings of its words. The vectors −→s representing the
meanings of sentences all live in the same meaning space S.
Hence we can compare the meanings of any two sentences
−→s ,−→t ∈ S by computing their inner-product 〈−→s |−→t 〉.

Surprisingly, Montague semantics emerges as a simplified
variant of our setting, by restricting the vectors to range over
B = {0, 1}, where sentences are simply true or false. The-
oretically, this is nothing but the passage from the category
of vector spaces to the category of relations as described in
(Abramsky & Coecke 2004; Coecke 2005b). In the same
spirit, one can look at vectors ranging over N or Q and ob-
tain degrees or probabilities of meaning. As a final remark,
in this paper we only set up our general mathematical frame-
work and leave a practical implementation for future work.

Linguistic background
We briefly present two domains of Computational Linguis-
tics which provide the linguistic background for this paper,
and refer the reader to the literature for more details.

1. Vector space models of meaning. The key idea be-
hind vector space models of meaning (Schuetze 1998) can

be summed up by Firth’s oft-quoted dictum that “you shall
know a word by the company it keeps”. The basic idea is
that the meaning of a word can be determined by the words
which appear in its contexts, where context can be a simple
n-word window, or the argument slots of grammatical rela-
tions, such as the direct object of the verb eat. Intuitively,
cat and dog have similar meanings (in some sense) because
cats and dogs sleep, run, walk; cats and dogs can be bought,
cleaned, stroked; cats and dogs can be small, big, furry. This
intuition is reflected in text because cat and dog appear as the
subject of sleep, run, walk; as the direct object of bought,
cleaned, stroked; and as the modifiee of small, big, furry.

Meanings of words can be represented as vectors in a
high-dimensional “meaning space”, in which the orthogo-
nal basis vectors are represented by context words. To give a
simple example, if the basis vectors correspond to eat, sleep,
and run, and the word dog has eat in its context 6 times (in
some text), sleep 5 times, and run 7 times, then the vector
for dog in this space is (6,5,7). The advantage of represent-
ing meanings in this way is that the vector space gives us a
notion of distance between words, so that the inner product
(or some other measure) can be used to determine how close
in meaning one word is to another. Computational models
along these lines have been built using large vector spaces
(tens of thousands of context words/basis vectors) and large
bodies of text (up to a billion words in some experiments).
Experiments in constructing thesauri using these methods
have been relatively successful. For example, the top 10
most similar nouns to introduction, according to the system
of (Curran 2004), are launch, implementation, advent, addi-
tion, adoption, arrival, absence, inclusion, creation.

2. Pregroup semantics for grammatical types. Pregroup
semantics was proposed by Lambek as a substitute for the
Lambek Calculus (Lambek 1958), a well-studied type cate-
gorial grammar (Moortgat 1997). The main reason we chose
the theory of pregroup semantics is its mathematical struc-
ture, which is ideal for the mathematical developments in
this paper. The key ingredient is the mathematical object
of a pregroup, which provides a tidy and simple algebraic
structure to mechanically check if sentences of a language
are grammatical.

A partially ordered monoid is a triple (P,≤, ·) where
(P,≤) is a partially ordered set, (P, ·) is a monoid with unit
1, and for all a, b, c ∈ P with a ≤ b we have

c · a ≤ c · b and a · c ≤ b · c . (1)

A pregroup is a partially ordered monoid (P,≤, ·) where
each type p ∈ P has a left adjoint pl and a right adjoint
pr, which means that p, pl, pr ∈ P satisfy

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p .
From this it also follows that 1l = 1r = 1.2

2Roughly speaking, the passage from Lambek Calculus to Pre-
groups is obtained by replacing the two residuals of the juxtapo-
sition operator (monoid multiplication) with two unary operations.
This enables us to work with a direct encoding of function argu-
ments as adjoints rather than an indirect encoding of them through
negation (implication by bottom).



Similar to type categorial grammars, one starts by fixing
some basic grammatical roles and a partial ordering between
them. We then freely generate a pregroup

(P,≤, ·, (−)l, (−)r)
of these types where 1 is now the unit of juxtaposition, that
is, the empty type. Examples of the basic types are:
• π for pronoun
• s for declarative statement
• q for yes-no question
• i for infinitive of the verb
• o for direct object.
In cases where the person of the pronoun and tense of the
verb matters, we also have πj , sk, qk ∈ P for j’th person
pronoun and k’th tense sentence and question. We require
the following partial orders:

πj ≤ π sk ≤ s qk ≤ q

The adjoints and juxtapositions of these types are used to
form the compound types. A type is assigned to each word
in a sentence and the monoid multiplication is used for juxta-
position. The juxtaposition of adjacent adjoint types causes
reduction to 1. This process is repeated until no more reduc-
tion is possible and a type is returned as the main type of
the juxtaposition. If this type is the desired type (e.g. s for
statement and q for question), the juxtaposition is a gram-
matical sentence. It has been shown in (Buszkowski 2001)
that this procedure is decidable. Thus we obtain a decision
procedure to determine if a given sentence of a language is
grammatical.

For simplicity, we use an arrow → for ≤ and drop the ·
between juxtaposed types. For the example sentence “He
likes her”, we have the following type assignment:

He likes her
π3 (πrsol) o

for which we obtain the following reduction:

π3(πrsol)o→ π(πrsol)o→ 1s1 → s

The reduction can be represented diagrammatically by con-
joining the adjacent adjoint types. For example, for the
above reduction we have the following diagram:

π (πr s ol) o

The same method is used to analyze other types of sen-
tences; for example, to type a yes-no question we assign
(iol) to the infinitive of the transitive verb and (qilπl) to
‘does’, and obtain the following reduction for ‘Does he like
her?’:

Does he like her? → question
(qilπl) π3 (iol) o → q

The reduction diagrams are helpful in demonstrating the or-
der of reductions, especially in compound sentences. They
can also be used to compare the grammatical patterns of dif-
ferent languages (Sadrzadeh 2006).

Category-theoretic background
We now sketch the mathematical prerequisites which consti-
tute the formal skeleton for the developments in this paper.
Note that, in contrast to (Abramsky & Coecke 2004), here
we consider the non-symmetric case of a compact closed
category, non-degenerate pregroups being examples of es-
sentially non-commutative compact closed categories. See
(Freyd & Yetter 1989) for more details. Other references
can be found in (Abramsky & Coecke 2004; Coecke 2005a;
Coecke 2006).

1. Monoidal categories. The formal definition of
monoidal categories is somewhat involved. It does admit
an intuitive operational interpretation and an elegant, purely
diagrammatic calculus. A (strict) monoidal category C
requires the following data and axioms:

• a family |C| of objects;

– for each ordered pair of objects (A,B) a corresponding
set C(A,B) of morphisms; it is convenient to abbrevi-
ate f ∈ C(A,B) by f : A→ B;

– for each ordered triple of objects (A,B,C), and each
f : A → B and g : B → C, there is a sequential
composite g ◦ f : A→ C; we moreover require that:

(h ◦ g) ◦ f = h ◦ (g ◦ f) ;

– for each object A there is an identity morphism 1A :
A→ A; for f : A→ B we moreover require that:

f ◦ 1A = f and 1B ◦ f = f ;

• for each ordered pair of objects (A,B) a composite object
A⊗B; we moreover require that:3

(A⊗B)⊗ C = A⊗ (B ⊗ C) ;

• there is a unit object I which satisfies:4

I⊗A = A = A⊗ I ;

• for each ordered pair of morphisms (f : A→ C, g : B →
D) a parallel composite f ⊗ g : A ⊗ B → C ⊗ D; we
moreover require bifunctoriality i.e.

(g1 ⊗ g2) ◦ (f1 ⊗ f2) = (g1 ◦ f1)⊗ (g2 ◦ f2) .

There is a very intuitive operational interpretation of
monoidal categories. We think of the objects as types of
systems. We think of a morphism f : A → B as a process
which takes a system of type A (say, in some state ψ) as
input and provides a system of type B (say, in state f(ψ))

3In the standard definition of monoidal categories this ‘strict’
equality is not required but rather the existence of a natural iso-
morphism between (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C). We assume
strictness in order to avoid talking about natural transformations,
and the corresponding coherence conditions between these natural
isomorphisms. This simplification is justified by the fact that each
monoidal category is categorically equivalent to a strict one, which
is obtained by imposing appropriate congruences.

4Again we assume strictness in contrast to the usual definition.



as output. Composition of morphisms is sequential appli-
cation of processes. The compound type A ⊗ B represents
joint systems. We think of I as the trivial system, which can
be either ‘nothing’ or ‘unspecified’. More on this intuitive
interpretation can be found in (Coecke 2006).

In the graphical calculus for monoidal categories we de-
pict morphisms by boxes, with incoming and outgoing wires
labelled by the corresponding types, with sequential compo-
sition depicted by connecting matching outputs and inputs,
and with parallel composition depicted by locating boxes
side by side. For example, the morphisms

1A f g ◦ f 1A ⊗ 1B f ⊗ 1C f ⊗ g (f ⊗ g) ◦ h

are depicted as:

f
B

A

g
D

Cf
B

A

C

B

f
B

A

A

h
B

E

A B

D

C

g
E

A f
f g

C

The unit object I is represented by ‘no wire’; for example

ψ : I → A π : A→ I π ◦ ψ : I → I

are depicted as:

ψ
A

A

π
ψ

A
π

π ψo

=

Morphisms ψ : I → A are called elements of A. Opera-
tionally one can think of them as the states of system A.

2. Compact closed categories. A monoidal category is
compact closed if for each object A there are also objects
Ar and Al, and morphisms

ηl : I → A⊗Al εl : Al⊗A→ I

ηr : I → Ar⊗A εr : A⊗Ar→ I
which satisfy:5

(1A ⊗ εl) ◦ (ηl ⊗ 1A) = 1A (εl ⊗ 1Al) ◦ (1Al ⊗ ηl) = 1Al

(εr⊗1A)◦ (1A⊗ηr) = 1A (1Ar ⊗ εr)◦ (ηr⊗1Ar ) = 1Ar

When depicting the morphisms ηl, εl, ηr, εr as

A Al A A
A Al

r

A Ar

these axioms substantially simplify to

=

A

A

A

A=A

A A

A

l

l

l

l

=

A

A

A

A =A

A A

Ar r

rr

i.e. they boil down to ‘yanking wires’.

5These conditions guarantee that the category is closed, as ex-
plained in a simple diagrammatical manner in (Coecke 2007).

3. Vector spaces, linear maps and tensor product. Let
FVect be the category which has vector spaces over the
base field R as objects, linear maps as morphisms and the
vector space tensor product as the monoidal tensor. To
simplify the presentation we assume that each vector space
comes with an inner product, that is, it is an inner-product
space. For the case of vector space models of meaning this is
always the case, since we consider a fixed base, and a fixed
base canonically induces an inner-product. The reader can
verify that compact closure arises, given a vector space V
with base {ei}i, by setting V l = V r = V ,

ηl = ηr : R → V ⊗ V :: 1 7→
∑

i

ei ⊗ ei

and

εl = εr : V ⊗ V → R ::
∑
ij

cij ψi ⊗ φj 7→
∑
ij

cij〈ψi|φj〉 .

So εl = εr is the inner-product extended by linearity to the
whole tensor product. Recall that if {ei}i is a base for V
and if {e′i}i is a base for W then {ei ⊗ e′j}ij is a base for
V ⊗W . In the base {ei ⊗ ej}ij for V ⊗ V the linear map
εl = εr : V ⊗V → R has as its matrix the row vector which
has entry 1 for the base vectors ei ⊗ ei and which has entry
0 for the base vectors ei ⊗ ej with i 6= j. The matrix of
ηl = ηr is the column vector obained by transposition.

4. Pregroups as compact closed categories. A pregroup
is an example of a posetal category, that is, a category which
is also a poset. For a category this means that for any two
objects there is either one or no morphism between them.
In the case that this morphism is of type A → B then we
write A ≤ B, and in the case it is of type B → A we
write B ≤ A. The reader can then verify that the axioms of
a category guarantee that the relation ≤ on |C| is indeed a
partial order. Conversely, any partially ordered set (P,≤) is
a category. For ‘objects’ a, b ∈ P we take P (a, b) to be the
singleton {a ≤ b} whenever a ≤ b, and empty otherwise. If
a ≤ b and b ≤ c we define a ≤ c to be the composite of the
‘morphisms’ a ≤ b and b ≤ c.

A partially ordered monoid is a monoidal category with
the monoid multiplication as tensor on objects; whenever
a ≤ c and b ≤ d then we have a · b ≤ c · d by equation (1),
and we define this to be the tensor of ‘morphisms’ a ≤ c and
b ≤ d. Bifunctoriality, as well as any equational statement
between morphisms in posetal categories, is trivially satis-
fied, since there can only be one morphism between any two
objects.

Finally, each pregroup is a compact closed category for

ηl = [1 ≤ p · pl] εl = [pl · p ≤ 1]

ηr = [1 ≤ pr · p] εr = [p · pr≤ 1]
and so the required equations are again trivially satisfied.
Diagrammatically, the links representing the type reductions
in

π (πr s ol) o

are exactly the ‘caps’:



B CA A C lr

B

of the compact closed structure. The symbolic counterpart
of this diagrammatically depicted morphism is:

εrA ⊗ 1B ⊗ εlC : A⊗Ar ⊗B ⊗ Cl ⊗ C → B .

Composing meanings = quantifying type logic
We have described two approaches to analysing structure
and meaning in natural language, one in which vector spaces
are used to assign meanings to words in a language, and
another in which pregroups are used to assign grammatical
structure to sentences:

vector space pregroup

language
�
ty
pe
lo
gi
cm

eaning -

We aim for a theory that unifies both approaches, in
which the compositional structure of pregroups would lift
to the level of assigning meaning to sentences and their con-
stituents. Our approach proceeds as follows: we look for a
mathematical structure which comprises both the composi-
tional pregroup structure and the vector space structure as
fragments.

‘some mathematical structure’

vector space
�‘f
ra
gm
en
t 1

’

pregroup

‘fragm
ent 2’-

language
�
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cm

eaning -

Our previous mathematical analysis suggests the following:

FVect

vector space
�

ob
je
ct
s

pregroup

cat. axiom
s-

language
�
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cm

eaning -

This suggestion is problematic, however. The compact
closed structure of FVect is somewhat degenerate since

Al = Ar = A. Moreover, there are canonical isomorphisms
V ⊗W → W ⊗ V which translate to posetal categories as
a · b = b · a. Therefore we have to refine types to retain the
full grammatical content obtained from the pregroup analy-
sis. There is an easy way of doing this: rather than objects
in FVect we will consider objects in the product category
FVect × P , where P is the pregroup generated from ba-
sic types. Explicitly, FVect is the category which has pairs
(V, a) with V a vector space and a ∈ P as objects, and the
following pairs as morphisms:

(f : V →W , p ≤ q)
which we can also write as

(f,≤) : (V, p) → (W, q).
Note that if p 6≤ q then there are no morphisms of type

(V, p) → (W, q). It is easy to verify that the compact closed
structure of FVect and P lifts component-wise to one on
FVect× P :

FVect× P

vector space
�

ob
je
ct
s

pregroup

cat. axiom
s-

language
�
ty
pe
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cm

eaning -

We can now also lift the mechanism for establishing well-
typedness of sentences within pregroups to morphisms in
FVect: given a reduction p · · · q → s, there is a morphism

(f,≤) : (V, p)⊗ . . .⊗ (W, q) → (S, s)
which assigns to each vector −→v ⊗ . . .⊗−→w ∈ V ⊗ . . .⊗W
(the meaning of a sentence of type p · · · q) a vector:

f(−→v ⊗ . . .⊗−→w ) ∈ S ,
where S is the meaning space of all sentences. Note that
this resulting vector f(−→v ⊗ . . . ⊗ −→w ) does not depend on
the grammatical type p · · · q.

Computing the meaning of a sentence
We define a meaning space to be a pair consisting of a vec-
tor space V and a grammatical type p, where, following the
vector space model of meaning, the vectors in V encode the
meaning of words of type p.6 To assign meaning to a sen-
tence of type π(πrsol)o , we take the tensor product of the
meaning spaces of its constituents, that is:

(V, π)⊗ (T, πrsol)⊗ (W, o) =
(
V ⊗ T ⊗W,π(πrsol)o

)
.

6The pair (−→v , p), where −→v is a vector which represents the
meaning of a word and p is the pregroup element which represents
its type, is our counterpart of the pure tensor−→v ⊗−→p in the proposal
of (Clark & Pulman 2007), in which −→p is a genuine vector. The
structure proposed here can easily be adapted to also allow types to
be represented in a vector space.



From the type πrsol of the transitive verb, we know that the
vector space in which it is described is of the form:

T = V ⊗ S ⊗W . (2)

The linear map f which realizes(
V ⊗ T ⊗W , o(πrsol)o

) (f,≤)- (S, s) ,

and arises from the type-reductions, is in this case:

f = εrV ⊗ 1S ⊗ εlW : V ⊗ T ⊗W → S .

Diagrammatically, the linear map can be represented as fol-
lows:

T WV V W

T

The matrix of f has dim(V )2 × dim(S) × dim(W )2
columns and dim(S) rows, and its entries are either 0 or 1.
We can also express f(−→v ⊗

−→
Ψ⊗−→w ) ∈ S for −→v ⊗

−→
Ψ⊗−→w ∈

V ⊗ S ⊗W in terms of the inner-product. If

Ψ =
∑
ijk

cijk
−→v i ⊗−→s j ⊗−→w k ∈ V ⊗ S ⊗W

then

f(−→v ⊗
−→
Ψ ⊗−→w ) =

∑
ijk

cijk〈−→v |−→v i〉−→s j〈−→w k|−→w 〉

=
∑

j

(∑
ik

cik〈−→v |−→v i〉〈−→w k|−→w 〉

)
−→s j .

This vector is the meaning of the sentence of type π(πrsol)o,
and assumes as given the meanings of its constituents −→v ∈
V ,

−→
Ψ ∈ T and −→w ∈ W , obtained from data using some

suitable method. In Dirac notation, f(−→v ⊗
−→
Ψ ⊗−→w ) would

be written as:(
〈εrV | ⊗ 1S ⊗ 〈εrV |

) ∣∣−→v ⊗
−→
Ψ ⊗−→w

〉
.

As mentioned in the introduction, our focus in this paper
is not on how to practically exploit the mathematical frame-
work, which would require substantial further research, but
to expose the mechanisms which govern it. To show that this
particular computation does indeed produce a vector which
captures the meaning of a sentence, we explicitly compute
f(−→v ⊗

−→
Ψ⊗−→w ) for some simple examples, with the intention

of providing the reader with some insight into the underly-
ing mechanisms and how the approach relates to existing
frameworks.

Example 1. Consider the sentence

John likes Mary. (3)

We encode this sentence as follows; we have:
−−→
John ∈ V,

−−→
likes ∈ T, −−−→

Mary ∈W

where we take V to be the vector space spanned by men and
W the vector space spanned by women.7 We will conve-
niently assume that all men are named John, using indices
to distinguish them: Johni. Similarly every woman will
be referred to as Maryj , for some j, and the set of vectors
{−−−→Maryj}j spans W . Let us assume that John in (3) is John3

and that Mary is Mary4. Assume also that we are only in-
terested in the truth or falsity of a sentence. Therefore we
take the sentence space S to be spanned by a single vector
−→
1 , which we identify with true, and we identify the origin
−→
0 with false. The transitive verb

−−→
likes is encoded as the

superposition:
−−→
likes =

∑
ij

−−−→
Johni ⊗

−−→
likesij ⊗

−−−→
Maryj

where
−−→
likesij =

−→
1 if Johni likes Maryj and

−−→
likesij =

−→
0

otherwise. Of course, in practice, the vector that we have
constructed here would be obtained automatically from data
using some suitable method. Finally, we obtain:

f
(−−→

John3 ⊗
−−→
likes ⊗−−−→

Mary4

)
=
∑
ij

〈−−→
John3 |

−−−→
Johni

〉
⊗
−−→
likesij⊗

〈−−−→
Maryj |

−−−→
Mary4

〉
=
∑
ij

δ3i
−−→
likesij δj4

=
−−→
likes34

So we indeed obtain the correct meaning of our sentence.
Note in particular that the transitive verb acts as a function
requiring an argument of type subject on its left and another
argument of type object on its right, in order to output an
argument of type sentence.

Example 2. We alter the above example as follows. Let S
be spanned by two vectors,

−→
l and

−→
h . Set

−−→
loves =

∑
ij

−−−→
Johni ⊗

−−→
lovesij ⊗

−−−→
Maryj

−−→
hates =

∑
ij

−−−→
Johni ⊗

−−→
hatesij ⊗

−−−→
Maryj

where
−−→
lovesij =

−→
l if Johni loves Maryj and

−−→
lovesij =

−→
0 otherwise, and

−−→
hatesij =

−→
h if Johni hates Maryj and

−−→
hatesij =

−→
0 otherwise. Set

−−→
likes =

3
4
−−→
loves +

1
4
−−→
hates .

The reader can verify that we obtain〈
f
(−→
J 3 ⊗

−−→
loves ⊗

−→
M4

) ∣∣∣ f(−→J 3 ⊗
−−→
likes ⊗

−→
M4

)〉
=

3
4

7In terms of context vectors this means that each word is its
own and only context vector, which is of course a far too simple
idealisation for practical purposes.



〈
f
(−→
J 3 ⊗

−−→
likes ⊗

−→
M4

) ∣∣∣ f(−→J 3 ⊗
−−→
hates ⊗

−→
M4

)〉
=

1
4〈

f
(−→
J 3 ⊗

−−→
loves ⊗

−→
M4

) ∣∣∣ f(−→J 3 ⊗
−−→
hates ⊗

−→
M4

)〉
= 0 .

Hence the meaning of the distinct verbs loves, likes and
hates in the different sentences propagates through the re-
duction mechanism and reveals itself when computing inner-
products between sentences in the sentence space.

Due to lack of space we leave more involved examples to
future papers, including those which involve comparing the
meanings of sentences of different types. Of course in a full-
blown vector space model, which has been automatically ex-
tracted from large amounts of text, we obtain ‘imperfect’
vector representations for words, rather than the ‘ideal’ ones
presented here. But the mechanism of how the meanings of
words propagate to the meanings of sentences remains the
same.

Change of model while retaining the logic
When fixing a base for each vector space we can think of
FVect as a category of which the morphisms are matrices
expressed in this base. These matrices have real numbers
as entries. It turns out that if we consider matrices with en-
tries not in (R,+,×), but in any other semiring8 (R,+,×),
we again obtain a compact closed category. This semiring
does not have to be a field, and can for example be the pos-
itive reals (R+,+,×), positive integers (N,+,×) or even
Booleans (B,∨,∧).

In the case of (B,∨,∧), we obtain an isomorphic copy
of the category FRel of finite sets and relations with the
cartesian product as tensor, as follows. LetX be a set whose
elements we have enumerated as X =

{
xi | 1 ≤ i ≤ |X|

}
.

Each element can be seen as a column with a 1 at the row
equal to its number and 0 in all other rows. Let Y =

{
yj |

1 ≤ j ≤ | Y |
}

be another enumerated set. A relation
r ⊆ X × Y is represented by an |X| × |Y | matrix, where
the entry in the ith column and jth row is 1 iff (xi, yj) ∈ r
and 0 otherwise. The composite s◦r of relations r ⊆ X×Y
and s ⊆ Y × Z is

{(x, z) | ∃y ∈ Y : (x, y) ∈ r, (y, z) ∈ s} .
The reader can verify that this composition induces matrix
multiplication of the corresponding matrices.

Interestingly, in the world of relations (but not functions)
there is a notion of superposition (Coecke 2006). The rela-
tions of type r ⊆ {∗} × X (in matricial terms, all column
vectors with 0’s and 1’s as entries) are in bijective correspon-
dence with the subsets of X via the correspondence

r 7→ {x ∈ X | (∗, x) ∈ r} .
Each such subset can be seen as the superposition of the
elements it contains. The inner-product of two subsets is 0 if
they are disjoint and 1 if they have a non-empty intersection.
So we can think of two disjoint sets as being orthogonal.

8A semiring is a set together with two operations, addition and
multiplication, for which we have a distributive law but no additive
nor multiplicative inverses. Having an addition and multiplication
of this kind suffices to have a matrix calculus.

Since the abstract nature of our procedure for assigning
meaning to sentences did not depend on the particular choice
of FVect we can now repeat it for the following situation:

FRel× P

powerset
�

ob
je
ct
s

pregroup

cat. axiom
s-

language
�
ty
pe
lo
gi
cm

eaning -

Montague-style semantics
In FRel × P we recover Montague semantics. Example
1 above was chosen in such a manner that it is essentially
relational. The singleton {∗} has two subsets, namely {∗}
and ∅, which we respectively identify with true and false.
We now have sets V , W and T = V × {∗} ×W with

V := {Johni}i , likes ⊂ T, W := {Maryj}j

such that:

likes := {(Johni, ∗,Maryj) | Johni likes Maryj}

=
⋃
ij

{Johni} × ∗ij × {Maryj}

where ∗ij is either {∗} or ∅. Finally we have

f ({John3} × likes × {Mary4})
=
⋃
ij

({John3}∩{Johni}〉×∗ij×
(
{Maryj}∩{Mary4}

)
= ∗34 .

Future Work
There are several implementation issues which need to be
investigated. It would be good to have a Curry-Howard like
isomorphism between non-commutative compact closed
categories, bicompact linear logic (Buszkowski 2001), and
Abramsky’s planar lambda calculus. This will enable us to
automatically obtain computations for the meaning and type
assignments of our categorical setting. Also, Montague-
style semantics lives in FRel×P whereas truly distributed
semantics lives in FVect × P . It would be interesting to
see where the so called ‘non-logical’ axioms of Montague
live and how they are manifested at the level of FVect×P .
Categorical axiomatics is flexible enough to accommodate
mixed states (Selinger 2007), so in principle we can imple-
ment the proposals of (Bruza & Widdows 2007).
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