Neural Networks for Machine Learning

Lecture 6a
Overview of mini-batch gradient descent

Geoffrey Hinton
with

Nitish Srivastava
Kevin Swersky

Reminder: The error surface for a linear neuron

\

* The error surface lies in a space with a
horizontal axis for each weight and one vertical t

axis for the error. E
— For a linear neuron with a squared error, it is

a quadratic bowl.
— Vertical cross-sections are parabolas.

— Horizontal cross-sections are ellipses.
* For multi-layer, non-linear nets the error surface

is much more complicated. wil @

— But locally, a piece of a quadratic bowl is

usually a very good approximation.
w2

Convergence speed of full batch learning when the error
surface is a quadratic bowl

* Going downhill reduces the error, but the
direction of steepest descent does not point
at the minimum unless the ellipse is a circle.

— The gradient is big in the direction in
which we only want to travel a small
distance.

Even for non-linear
multi-layer nets, the
error surface is locally
quadratic, so the same
speed issues apply.

— The gradient is small in the direction in
which we want to travel a large distance.

How the learning goes wrong

* |f the learning rate is big, the weights slosh to
and fro across the ravine.

— If the learning rate is too big, this

oscillation diverges.
e What we would like to achieve:

— Move quickly in directions with small but
consistent gradients.

— Move slowly in directions with big but
inconsistent gradients.

Stochastic gradient descent

If the dataset is highly redundant, the
gradient on the first half is almost
identical to the gradient on the
second half.

— So instead of computing the full
gradient, update the weights using
the gradient on the first half and
then get a gradient for the new
weights on the second half.

— The extreme version of this
approach updates weights after
each case. Its called “online”.

Mini-batches are usually better
than online.

— Less computation is used
updating the weights.

— Computing the gradient for
many cases simultaneously
uses matrix-matrix
multiplies which are very
efficient, especially on GPUs

Mini-batches need to be
balanced for classes

Two types of learning algorithm

If we use the full gradient computed from all
the training cases, there are many clever ways
to speed up learning (e.g. non-linear conjugate
gradient).

— The optimization community has
studied the general problem of
optimizing smooth non-linear
functions for many years.

— Multilayer neural nets are not typical
of the problems they study so their

methods may need a lot of adaptation.

For large neural networks with
very large and highly redundant
training sets, it is nearly always
best to use mini-batch learning.

— The mini-batches may
need to be quite big
when adapting fancy
methods.

— Big mini-batches are

more computationally
efficient.

A basic mini-batch gradient descent algorithm

Guess an initial learning rate.

— If the error keeps getting worse
or oscillates wildly, reduce the
learning rate.

— If the error is falling fairly
consistently but slowly, increase
the learning rate.

Write a simple program to automate
this way of adjusting the learning
rate.

Towards the end of mini-batch
learning it nearly always helps to
turn down the learning rate.

— This removes fluctuations in the
final weights caused by the
variations between mini-
batches.

Turn down the learning rate when
the error stops decreasing.

— Use the error on a separate
validation set

Neural Networks for Machine Learning

Lecture 6b
A bag of tricks for mini-batch gradient descent

Geoffrey Hinton
with

Nitish Srivastava
Kevin Swersky

Be careful about turning down the learning rate

e Turning down the learning
rate reduces the random
fluctuations in the error due
to the different gradients on
different mini-batches.

reduce
learning rate

l

error

— So we get a quick win.

— But then we get slower
learning.

e Don’t turn down the

epoch
learning rate too soon!

Initializing the weights

If two hidden units have exactly
the same bias and exactly the
same incoming and outgoing
weights, they will always get
exactly the same gradient.
— So they can never learn to be
different features.

— We break symmetry by
initializing the weights to
have small random values.

If a hidden unit has a big fan-in,
small changes on many of its
incoming weights can cause the
learning to overshoot.

— We generally want smaller
incoming weights when the
fan-in is big, so initialize the
weights to be proportional to
sgrt(fan-in).

We can also scale the learning
rate the same way.

Shifting the inputs

color indicates
training case

_ wq W
* When using steepest descent,
shifting the input values makes a big
difference.
— It usually helps to transform
each component of the input _
vector so that it has zero mean 101, 101 > 2 gIVES error
over the whole training set. 101, 99 =0 surface
* The hypberbolic tangent (which is
2*logistic -1) produces hidden
zli]cgle\'/r?tlons that are roughly zero 1 1> 2 giveserror @
— In this respect its better than the 1, -1> 0 surface

logistic.

Scaling the inputs color indicates
weight axis
wq Wo
* When using steepest descent,
scaling the input values
makes a big difference.

— It usually helps to 0.1, 10 > 2 giveserror —+
transform each 0.1, -10 2> 0 surface
component of the input
vector so that it has unit
variance over the whole

training set.

1, 1> 2 giveserror
1, -1=> 0 surface

A more thorough method: Decorrelate the input components

For a linear neuron, we get a big win by decorrelating each component of the
input from the other input components.
There are several different ways to decorrelate inputs. A reasonable method is
to use Principal Components Analysis.

— Drop the principal components with the smallest eigenvalues.

* This achieves some dimensionality reduction.

— Divide the remaining principal components by the square roots of their
eigenvalues. For a linear neuron, this converts an axis aligned elliptical

error surface into a circular one.
For a circular error surface, the gradient points straight towards the minimum.

Common problems that occur in multilayer networks

If we start with a very big learning
rate, the weights of each hidden
unit will all become very big and
positive or very big and negative.

— The error derivatives for the
hidden units will all become
tiny and the error will not
decrease.

— This is usually a plateau, but
people often mistake it for a
local minimum.

In classification networks that use
a squared error or a cross-entropy
error, the best guessing strategy is
to make each output unit always
produce an output equal to the
proportion of time it should be a 1.

— The network finds this strategy
quickly and may take a long
time to improve on it by
making use of the input.

— This is another plateau that
looks like a local minimum.

Four ways to speed up mini-batch learning

Use “momentum”

— Instead of using the gradient
to change the position of the
weight “particle”, use it to
change the velocity.

Use separate adaptive learning
rates for each parameter

— Slowly adjust the rate using
the consistency of the
gradient for that parameter.

rmsprop: Divide the learning rate for a
weight by a running average of the
magnitudes of recent gradients for that

weight.
— This is the mini-batch version of just
using the sign of the gradient.

Take a fancy method from the
optimization literature that makes use of
curvature information (not this lecture)

— Adapt it to work for neural nets
— Adapt it to work for mini-batches.

Neural Networks for Machine Learning

Lecture 6¢C
The momentum method

Geoffrey Hinton
with

Nitish Srivastava
Kevin Swersky

The intuition behind the momentum method

Imagine a ball on the error surface. The ¢ It damps oscillations in directions of

location of the ball in the horizontal high curvature by combining
plane represents the weight vector. gradients with opposite signs.
— The ball starts off by following the ¢ It builds up speed in directio

gradient, but once it has velocity, a gentle but consistent
it no longer does steepest descent.

— |ts momentum makes it keep
going in the previous direction.

The equations of the momentum method

The effect of the gradient is to
vi)=av(t-1)- eﬁ(t) — increment the previous velocity. The
w velocity also decays by a which is
slightly less then 1.

Aw(t) =v(t) 3 The weight change is equal to the current
velocity.
oE
=av(t-1)-e—(1)
oW _ :
E The weight change can be expressed in

=a Aw(t-1)-e—(t) <€ termsofthe previous weight change and
\ the current gradient.

The behavior of the momentum method

If the error surface is a tilted plane,
the ball reaches a terminal velocity.

— If the momentum is close to 1,
this is much faster than simple
gradient descent.

At the beginning of learning there may
be very large gradients.

— So it pays to use a small
momentum (e.g. 0.5).

— Once the large gradients have
disappeared and the weights are
stuck in a ravine the momentum
can be smoothly raised to its final
value (e.g. 0.9 or even 0.99)

This allows us to learn at a rate that
would cause divergent oscillations
without the momentum.

A better type of momentum (Nesterov 1983)

The standard momentum method
first computes the gradient at the
current location and then takes a big
jump in the direction of the updated
accumulated gradient.

llya Sutskever (2012 unpublished)
suggested a new form of momentum
that often works better.

— Inspired by the Nesterov method
for optimizing convex functions.

First make a big jump in the
direction of the previous
accumulated gradient.

Then measure the gradient
where you end up and make a
correction.

— Its better to correct a
mistake after you have
made it!

A picture of the Nesterov method

* First make a big jump in the direction of the previous accumulated gradient.
* Then measure the gradient where you end up and make a correction.

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

Neural Networks for Machine Learning

Lecture 6d
A separate, adaptive learning rate for each
connection

Geoffrey Hinton
with

Nitish Srivastava
Kevin Swersky

The intuition behind separate adaptive learning rates

In a multilayer net, the appropriate learning rates
can vary widely between weights:

— The magnitudes of the gradients are often very
different for different layers, especially if the initial
weights are small.

— The fan-in of a unit determines the size of the
“overshoot” effects caused by simultaneously

changing many of the incoming weights of a unit to
correct the same error.

So use a global learning rate (set by hand)
multiplied by an appropriate local gain that is
determined empirically for each weight.

T

O O O

Gradients can get very
small in the early layers of
very deep nets.

Q)

The fan-in often varies
widely between layers.

One way to determine the individual learning rates

Start with a local gain of 1 for every weight.

Increase the local gain if the gradient for
that weight does not change sign.

Use small additive increases and
multiplicative decreases (for mini-batch)

— This ensures that big gains decay rapidly
when oscillations start.

— If the gradient is totally random the gain
will hover around 1 when we increase
by plus 0 half the time and decrease
by times 1—0 half the time.

ok
AW, = —€ 0., ——_
ij gz] an-j

if

£(t)i(t -1 >0
ow;; owy

then g (t)=g;(t-1)+.05
else g, (t)=g;(t-1)*.95

Tricks for making adaptive learning rates work better

Limit the gains to lie in some * Adaptive learning rates can be
reasonable range combined with momentum.

— e.g.[0.1,10] or [.01, 100] — Use the agreement in sign
Use full batch learning or big mini- between the current gradient for a
batches weight and the velocity for that

— This ensures that changes in weight (Jacobs, 1989).

the sign of the gradient are
not mainly due to the

sampling error of a mini-
batch. — Momentum does not care about

the alignment of the axes.

Adaptive learning rates only deal with
axis-aligned effects.

Neural Networks for Machine Learning

Lecture 6e
rmsprop: Divide the gradient by a running average
of its recent magnitude

Geoffrey Hinton
with

Nitish Srivastava
Kevin Swersky

rprop: Using only the sign of the gradient

The magnitude of the gradient can be * rprop: This combines the idea of only

very different for different weights using the sign of the gradient with the
and can change during learning. idea of adapting the step size separately
— This makes it hard to choose a for each weight.
single global learning rate. — Increase the step size.for a weight
For full batch learning, we can deal multiplicatively (e.g. times 1.2) if the
with this variation by only using the signs of its last two gradients agree.
sign of the gradient. — Otherwise decrease the step size
— The weight updates are all of the multiplicatively (e.g. times 0.5).
same magnitude. — Limit the step sizes to be less than

tiny gradients quickly. Shuster’s advice).

Why rprop does not work with mini-batches

The idea behind stochastic gradient
descent is that when the learning
rate is small, it averages the
gradients over successive mini-
batches.

— Consider a weight that gets a
gradient of +0.1 on nine mini-
batches and a gradient of -0.9
on the tenth mini-batch.

— We want this weight to stay
roughly where it is.

rprop would increment the weight
nine times and decrement it once by
about the same amount (assuming
any adaptation of the step sizes is
small on this time-scale).

— So the weight would grow a lot.
Is there a way to combine:

— The robustness of rprop.

— The efficiency of mini-batches.

— The effective averaging of
gradients over mini-batches.

rmsprop: A mini-batch version of rprop

rprop is equivalent to using the gradient but also dividing by the size of the
gradient.

— The problem with mini-batch rprop is that we divide by a different number
for each mini-batch. So why not force the number we divide by to be very
similar for adjacent mini-batches?

rmsprop: Keep a moving average of the squared gradient for each weight

2
_ _ oE
MeanSquare(w, t) = 0.9 MeanSquare(w, t—1) + 0.1 (Aw (l‘))

Dividing the gradient by \/MeanSquare(w,) makes the learning work much
better (Tijmen Tieleman, unpublished).

Further developments of rmsprop

Combining rmsprop with standard momentum

— Momentum does not help as much as it normally does. Needs more
investigation.

Combining rmsprop with Nesterov momentum (Sutskever 2012)

— It works best if the RMS of the recent gradients is used to divide the
correction rather than the jump in the direction of accumulated corrections.

Combining rmsprop with adaptive learning rates for each connection
— Needs more investigation.
Other methods related to rmsprop
— Yann LeCun’s group has a fancy version in “No more pesky learning rates”

Summary of learning methods for neural networks

For small datasets (e.g. 10,000 cases) * Why there is no simple recipe:

or bigger datasets without much Neural nets differ a lot:
redundancy, use a full-batch Verv d 2l
method. — Very deep nets (especially ones
. _ with narrow bottlenecks).

— Conjugate gradient, LBFGS ... _ Recurrent nets

— adaptive learning rates, rprop ... _ Wide shallow r{ets

For big, redundant datasets use mini- Tasks differ a lot:

batches.

— Try gradient descent with — SOome require very accurate
weights, some don't.

momentum. ‘ :
— Try rmsprop (with momentum ?) — 20MENave many very rare
cases (e.g. words).

— Try LeCun’s latest recipe.

