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Problem Setting

We consider the linear dynamical system
xk+1 = Axk +Buk +Hwk, (1)

with associated high-dimensional observations (e.g.
images)

zk = q(xk). (2)

Our goal is then to solve the optimal control problem
minimize c(x,u)
subject to dynamics (1),

uk = γ(z0:k) = π(y0:k).
(3)

We suppose we have a perception map p that acts
as a virtual sensor to yield outputs

yk = p(zk) = Cxk + ek. (4)
Then the optimal control problem can be reformu-
lated into linear output feedback control.

Perception Error Characterization

If the error function e(x) = p(q(x))− Cx is locally
S-slope bounded, then within local regions of each
training data point Xγ(xd, zd) defined as
{x | ‖p(zd)− Cxd‖ + S‖x− xd‖ ≤ γ}, (5)

it is possible to guarantee bounded errors.
We therefore define the safe set as the union:

Xγ =
⋃

(xd,zd)∈S0

Xγ(xd, zd) . (6)

Within Xγ the perception error is bounded by γ.
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Figure: Plotting the perception errors vs. distance from nearest
training point shows their slope-boundedness. Left: synthetic
example, middle: visual odometry for driving example, right:
CNN for driving example.

Robust Control Analysis

Figure: The robust control view of the closed-loop system

For any linear feedback control law K, we equiva-
lently describe the closed-loop system responses to
process and measurement noise:x

u

 =
Φxw Φxe

Φuw Φue

 Hw
e

 . (7)

Since we consider a perception map as a virtual
sensor, perception errors are the measurement noise.
Therefore, Φxe describes the effect of the perception
error on the state.

Main Result

Suppose the perception errors are locally S-slope
bounded within a radius r and the maximum train-
ing error is R0. Then for control law u = Kp(z),
define ‖x̂ − xd‖ to be the planned deviation from
the training data in the absence of sensor error.
Then as long as the system is not too sensitive to
measurement error,

‖Φxe‖ ≤
1− 1

r‖x̂− xd‖
S + R0

r

, (8)

we can guarantee for all closed loop trajectories:
1 The perception errors remain bounded

‖p(z)− Cx‖ ≤ ‖x̂− xd‖ +R0

1− S‖Φxe‖
:= γ, (9)

2 The trajectory lies within the safe set Xγ.
This result establishes conditions for which the safe
set Xγ is made invariant by the control law.
In designing the controller, there is a trade-off when
ensuring that ‖x̂− xd‖ and ‖Φxe‖ are both small,
but more training data makes this easier.

Experiments: Waypoint Following

(a) Images zt and reference to track for synthetic example. (b) Images zt and reference to track for vehicle task.
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(c) Trajectories and perception errors for synthetic example.
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(d) Perception errors for visual odometry (top) and CNN (bottom).

Figure: Experimental setting and results: tracking and perception errors for (c) 200 rollouts of the synthetic and perception errors (d)
100 rollouts of the CARLA examples with both visual odometry and CNN perception. Lines indicate median values while shaded
regions indicate upper and lower quartiles.

We present numerical experiments for two experimental settings and three different perception schemes.
• Synthetic: White dot on black background with Gaussian noise, and a linear map from image to position.
• Driving with visual odometry: CARLA graphics simulator generates observations as a function of
position and heading angle, and a visual odometry method maps image to position. The visual odometry
method is “trained” with 200 datapoints using SLAM to construct a database of references images with
known poses.

• Driving with CNN: Observations are generated as above, and a one-layer CNN maps image to position.
The CNN is trained with 30,000 datapoints.

In all cases, we consider two dimensional double integrator dynamics. Controllers are synthesized according
to the LQG and L1 objective functions. We compare nominal controllers to robust controllers, which are
synthesized with a constraint as in (8).
We demonstrate a scenario in which the nominal controller fails to track the reference, while the robust
controller is successful. Furthermore, different perception strategies matter: the failures of the visual odometry
method are less frequent that those of the CNN method, which relates to the different slope characteristics of
the errors maps (Figure 1).


